SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rouan D.) srt2:(2022)"

Sökning: WFRF:(Rouan D.) > (2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mesa, D., et al. (författare)
  • Constraining masses and separations of unseen companions to five accelerating nearby stars star
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 665
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. In this work, we aim to constrain the masses and separations of potential substellar companions to five accelerating stars (HIP 1481, HIP 88399, HIP 96334, HIP 30314, and HIP 116063) using multiple data sets acquired with different techniques.Methods. Our targets were originally observed as part of the SPHERE/SHINE survey, and radial velocity (RV) archive data were also available for four of the five objects. No companions were originally detected in any of these data sets, but the presence of significant proper motion anomalies (PMas) for all the stars strongly suggested the presence of a companion. Combining the information from the PMas with the limits derived from the RV and SPHERE data, we were able to put constraints on the characteristics of the unseen companions.Results. Our analysis led to relatively strong constraints for both HIP 1481 and HIP 88399, narrowing down the companion masses to 2–5 MJup and 3–5 MJup and separations within 2–15 au and 3–9 au, respectively. Because of the large age uncertainties for HIP 96334, the poor observing conditions for the SPHERE epochs of HIP 30314, and the lack of RV data for HIP 116063, the results for these targets were not as well defined, but we were still able to constrain the properties of the putative companions within a reasonable confidence level.Conclusions. For all five targets, our analysis reveals that the companions responsible for the PMa signal would be well within reach for future instruments planned for the ELT (e.g., MICADO), which would easily achieve the required contrast and angular resolution. Our results therefore represent yet another confirmation of the power of multi-technique approaches for both the discovery and characterisation of planetary systems.
  •  
2.
  • Mesa, D., et al. (författare)
  • Signs of late infall and possible planet formation around DR Tau using VLT/SPHERE and LBTI/LMIRCam
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Protoplanetary disks around young stars often contain substructures like rings, gaps, and spirals that could be caused by interactions between the disk and forming planets.Aims. We aim to study the young (1-3 Myr) star DR Tau in the near-infrared and characterize its disk, which was previously resolved through submillimeter interferometry with ALMA, and to search for possible substellar companions embedded into it.Methods. We observed DR Tau with VLT/SPHERE both in polarized light (H broad band) and total intensity (in Y, J, H, and K spectral bands). We also performed L' band observations with LBTI/LMIRCam on the Large Binocular Telescope (LBT). We applied differential imaging techniques to analyze both the polarized data, using dual beam polarization imaging, and the total intensity data, using angular and spectral differential imaging.Results. We found two previously undetected spirals extending north-east and south of the star, respectively. We further detected an arc-like structure north of the star. Finally a bright, compact and elongated structure was detected at a separation of 303 +/- 10 mas and a position angle 21.2 +/- 3.7 degrees, just at the root of the north-east spiral arm. Since this feature is visible both in polarized light and total intensity and has a blue spectrum, it is likely caused by stellar light scattered by dust.Conclusions. The two spiral arms are at different separations from the star, have very different pitch angles, and are separated by an apparent discontinuity, suggesting they might have a different origin. The very open southern spiral arm might be caused by infalling material from late encounters with cloudlets into the formation environment of the star itself. The compact feature could be caused by interaction with a planet in formation still embedded in its dust envelope and it could be responsible for launching the north-east spiral. We estimate a mass of the putative embedded object of the order of few M-Jup.
  •  
3.
  • Bonavita, M., et al. (författare)
  • New binaries from the SHINE survey
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 663
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the multiple stellar systems observed within the SpHere INfrared survey for Exoplanet (SHINE). SHINE searched for sub-stellar companions to young stars using high contrast imaging. Although stars with known stellar companions within the SPHERE field of view (< 5.5 arcsec) were removed from the original target list, we detected additional stellar companions to 78 of the 463 SHINE targets observed so far. Twenty-seven per cent of the systems have three or more components. Given the heterogeneity of the sample in terms of observing conditions and strategy, tailored routines were used for data reduction and analysis, some of which were specifically designed for these datasets. We then combined SPHERE data with literature and archival data, TESS light curves, and Gaia parallaxes and proper motions for an accurate characterisation of the systems. Combining all data, we were able to constrain the orbits of 25 systems. We carefully assessed the completeness of our sample for separations between 50–500 mas (corresponding to periods of a few years to a few decades), taking into account the initial selection biases and recovering part of the systems excluded from the original list due to their multiplicity. This allowed us to compare the binary frequency for our sample with previous studies and highlight interesting trends in the mass ratio and period distribution. We also found that, when such an estimate was possible, the values of the masses derived from dynamical arguments were in good agreement with the model predictions. Stellar and orbital spins appear fairly well aligned for the 12 stars that have enough data, which favours a disk fragmentation origin. Our results highlight the importance of combining different techniques when tackling complex problems such as the formation of binaries and show how large samples can be useful for more than one purpose.
  •  
4.
  • Desgrange, C., et al. (författare)
  • In-depth direct imaging and spectroscopic characterization of the young Solar System analog HD 95086
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 664
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. HD 95086 is a young nearby Solar System analog hosting a giant exoplanet orbiting at 57 au from the star between an inner and outer debris belt. The existence of additional planets has been suggested as the mechanism that maintains the broad cavity between the two belts.Aims. We present a dedicated monitoring of HD 95086 with the VLT/SPHERE instrument to refine the orbital and atmospheric properties of HD 95086 b, and to search for additional planets in this system.Methods. SPHERE observations, spread over ten epochs from 2015 to 2019 and including five new datasets, were used. Combined with archival observations, from VLT/NaCo (2012-2013) and Gemini/GPI (2013-2016), the extended set of astrometric measurements allowed us to refine the orbital properties of HD 95086 b. We also investigated the spectral properties and the presence of a circumplanetary disk around HD 95086 b by using the special fitting tool exploring the diversity of several atmospheric models. In addition, we improved our detection limits in order to search for a putative planet c via the K-Stacker algorithm.Results. We extracted for the first time the JH low-resolution spectrum of HD 95086 b by stacking the six best epochs, and confirm its very red spectral energy distribution. Combined with additional datasets from GPI and NaCo, our analysis indicates that this very red color can be explained by the presence of a circumplanetary disk around planet b, with a range of high-temperature solutions (1400–1600 K) and significant extinction (Av ≳ 10 mag), or by a super-solar metallicity atmosphere with lower temperatures (800–300 K), and small to medium amount of extinction (Av ≲ 10 mag). We do not find any robust candidates for planet c, but give updated constraints on its potential mass and location.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy