SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rounsevell Mark D. A.) srt2:(2015-2019)"

Sökning: WFRF:(Rounsevell Mark D. A.) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kehoe, Laura, et al. (författare)
  • Make EU trade with Brazil sustainable
  • 2019
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Alexander, Peter, et al. (författare)
  • Assessing uncertainties in land cover projections
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013. ; 23:2, s. 767-781
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding uncertainties in land cover projections is critical to investigating land-based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro-economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
  •  
3.
  • Prestele, Reinhard, et al. (författare)
  • Hotspots of uncertainty in land-use and land-cover change projections : a global-scale model comparison
  • 2016
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 22:12, s. 3967-3983
  • Tidskriftsartikel (refereegranskat)abstract
    • Model-based global projections of future land-use and land-cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.
  •  
4.
  • Alexander, Peter, et al. (författare)
  • Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy
  • 2015
  • Ingår i: Global Environmental Change. - : Elsevier BV. - 0959-3780. ; 35, s. 138-147
  • Tidskriftsartikel (refereegranskat)abstract
    • The nexus of population growth and changing diets has increased the demands placed on agriculture to supply food for human consumption, animal feed and fuel. Rising incomes lead to dietary changes, from staple crops, towards commodities with greater land requirements, e.g. meat and dairy products. Despite yield improvements partially offsetting increases in demand, agricultural land has still been expanding, causing potential harm to ecosystems, e.g. through deforestation. We use country-level panel data (1961-2011) to allocate the land areas used to produce food for human consumption, waste and biofuels, and to attribute the food production area changes to diet, population and yields drivers. The results show that the production of animal products dominates agricultural land use and land use change over the 50-year period, accounting for 65% of land use change. The rate of extensification of animal production was found to have reduced more recently, principally due to the smaller effect of population growth. The area used for bioenergy was shown to be relatively small, but formed a substantial contribution (36%) to net agricultural expansion in the most recent period. Nevertheless, in comparison to dietary shifts in animal products, bioenergy accounted for less than a tenth of the increase in demand for agricultural land. Population expansion has been the largest driver for agricultural land use change, but dietary changes are a significant and growing driver. China was a notable exception, where dietary transitions dominate food consumption changes, due to rapidly rising incomes. This suggests that future dietary changes will become the principal driver for land use change, pointing to the potential need for demand-side measures to regulate agricultural expansion. (C) 2015 Elsevier Ltd. All rights reserved.
  •  
5.
  • Blanco, Victor, et al. (författare)
  • The effect of forest owner decision-making, climatic change and societal demands on land-use change and ecosystem service provision in Sweden
  • 2017
  • Ingår i: Ecosystem Services. - : Elsevier BV. - 2212-0416. ; 23, s. 174-208
  • Tidskriftsartikel (refereegranskat)abstract
    • The uncertain effects of climatic change and changing demands for ecosystem services on the distribution of forests and their levels of service provision require assessments of future land-use change, ecosystem service provision, and how ecosystem service demands may be met. We present CRAFTY-Sweden, an agent-based, land-use model that incorporates land owner behaviour and decision-making in modelling future ecosystem service provision in the Swedish forestry sector. Future changes were simulated under scenarios of socio-economic and climatic change between 2010 and 2100. The simulations indicate that the influence of climatic change (on land productivities) may be less important than that of socio-economic change or behavioural differences. Simulations further demonstrate that the variability in land owner and societal behaviour has a substantial role in determining the direction and impact of land-use change. The results indicate a sizeable increase in timber harvesting in coming decades, which together with a substantial decoupling between supply and demand for forest ecosystem services highlights the challenge of continuously meeting demands for ecosystem services over long periods of time. There is a clear need for model applications of this kind to better understand the variation in ecosystem service provision in the forestry sector, and other associated land-use changes.
  •  
6.
  • Engstrom, Kerstin, et al. (författare)
  • Applying Occam's razor to global agricultural land use change
  • 2016
  • Ingår i: Environmental Modelling & Software. - : Elsevier BV. - 1364-8152. ; 75, s. 212-229
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a parsimonious agricultural land-use model that is designed to replicate global land-use change while allowing the exploration of uncertainties in input parameters. At the global scale, the modelled uncertainty range of agricultural land-use change covers observed land-use change. Spatial patterns of cropland change at the country level are simulated less satisfactorily, but temporal trends of cropland change in large agricultural nations were replicated by the model. A variance-based global sensitivity analysis showed that uncertainties in the input parameters representing to consumption preferences are important for changes in global agricultural areas. However, uncertainties in technological change had the largest effect on cereal yields and changes in global agricultural area. Uncertainties related to technological change in developing countries were most important for modelling the extent of cropland. The performance of the model suggests that highly generalised representations of socioeconomic processes can be used to replicate global land-use change. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  •  
7.
  • Engström, Kerstin, et al. (författare)
  • Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework
  • 2016
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 7:4, s. 893-915
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS (Lund-Potsdam-Jena General Ecosystem Simulator) using socio-economic data from the SSPs and climate data from the RCPs (representative concentration pathways). The simulated range of global cropland is 893-2380 Mha in 2100 (± 1 standard deviation), with the main uncertainties arising from differences in the socio-economic conditions prescribed by the SSP scenarios and the assumptions that underpin the translation of qualitative SSP storylines into quantitative model input parameters. Uncertainties in the assumptions for population growth, technological change and cropland degradation were found to be the most important for global cropland, while uncertainty in food consumption had less influence on the results. The uncertainties arising from climate variability and the differences between climate change scenarios do not strongly affect the range of global cropland futures. Some overlap occurred across all of the conditional probabilistic futures, except for those based on SSP3. We conclude that completely different socio-economic and climate change futures, although sharing low to medium population development, can result in very similar cropland areas on the aggregated global scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (6)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Rounsevell, Mark D A (6)
Alexander, Peter (5)
Arneth, Almut (4)
Brown, Calum (3)
Engstrom, Kerstin (3)
Jain, Atul K. (2)
visa fler...
Prestele, Reinhard (2)
Verburg, Peter H. (2)
Calvin, Katherine (2)
Fujimori, Shinichiro (2)
Hasegawa, Tomoko (2)
Havlik, Petr (2)
Holzhauer, Sascha (2)
Humpenöder, Florian (2)
Krisztin, Tamás (2)
Kyle, Page (2)
Rothhaupt, Karl-Otto (1)
Weigend, Maximilian (1)
Farrell, Katharine N ... (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Lukic, Marko (1)
Pereira, Laura (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Brogaard, Sara (1)
Kasimir, Åsa (1)
Wang-Erlandsson, Lan (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Vajda, Vivi (1)
Pascual, Unai (1)
Tscharntke, Teja (1)
Baranzelli, Claudia (1)
Batista e Silva, Fil ... (1)
Butler, Adam (1)
Dendoncker, Nicolas (1)
Doelman, Jonathan C. (1)
Dunford, Robert (1)
Eitelberg, David (1)
Harrison, Paula A. (1)
Jacobs-Crisioni, Chr ... (1)
Lavalle, Carlo (1)
Lenton, Tim (1)
visa färre...
Lärosäte
Lunds universitet (7)
Kungliga Tekniska Högskolan (1)
Mittuniversitetet (1)
Chalmers tekniska högskola (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Lantbruksvetenskap (6)
Naturvetenskap (4)
Teknik (1)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy