SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rova Ulrika) srt2:(2005-2009)"

Sökning: WFRF:(Rova Ulrika) > (2005-2009)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Andersson, Christian, et al. (författare)
  • Effect of different carbon sources on the production of succinic acid using metabolically engineered Escherichia coli
  • 2007
  • Ingår i: Biotechnology progress (Print). - : Wiley. - 8756-7938 .- 1520-6033. ; 23:2, s. 381-388
  • Tidskriftsartikel (refereegranskat)abstract
    • Succinic acid (SA) is an important platform molecule in the synthesis of a number of commodity and specialty chemicals. In the present work, dual-phase batch fermentations with the E. coli strain AFP184 were performed using a medium suited for large-scale industrial production of SA. The ability of the strain to ferment different sugars was investigated. The sugars studied were sucrose, glucose, fructose, xylose, and equal mixtures of glucose and fructose and glucose and xylose at a total initial sugar concentration of 100 g L-1. AFP184 was able to utilize all sugars and sugar combinations except sucrose for biomass generation and succinate production. For sucrose as a substrate no succinic acid was produced and none of the sucrose was metabolized. The succinic acid yield from glucose (0.83 g succinic acid per gram glucose consumed anaerobically) was higher than the yield from fructose (0.66 g g-1). When using xylose as a carbon source, a yield of 0.50 g g-1 was obtained. In the mixed-sugar fermentations no catabolite repression was detected. Mixtures of glucose and xylose resulted in higher yields (0.60 g g-1) than use of xylose alone. Fermenting glucose mixed with fructose gave a lower yield (0.58 g g-1) than fructose used as the sole carbon source. The reason is an increased pyruvate production. The pyruvate concentration decreased later in the fermentation. Final succinic acid concentrations were in the range of 25-40 g L-1. Acetic and pyruvic acid were the only other products detected and accumulated to concentrations of 2.7-6.7 and 0-2.7 g L-1. Production of succinic acid decreased when organic acid concentrations reached approximately 30 g L-1. This study demonstrates that E. coli strain AFP184 is able to produce succinic acid in a low cost medium from a variety of sugars with only small amounts of byproducts formed.
  •  
2.
  • Andersson, Christian, et al. (författare)
  • Effects of neutralising agent, organic acids, and osmolarity on succinic acid production by Escherichia coli AFP184
  • 2008
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Using a low-cost medium Escherichia coli AFP184 has previously been reported to produce succinic acid with volumetric productivities close to 3 g L-1 h-1. At a total organic acid concentration of 30 g L-1 the productivity decreased drastically resulting in final succinate concentrations of 40 g L-1. The economical viability of biochemical succinic acid production would benefit from higher final succinic acid concentrations and volumetric productivities maintained at >2.5 g L-1 h-1 for an extended period of time. In the present work the effects of osmolarity and neutralising agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3) on succinic acid production by AFP184 were investigated. Highest concentration of succinic acid was obtained with Na2CO3, 75 g L-1. It was also found that the osmolarity resulting from succinate production and subsequent base addition, only marginally affected the productivity per viable cell. Organic acid inhibition due to the produced succinic acid on the other hand significantly reduced succinic acid productivity per viable cell. When using NH4OH productivity completely ceased at approximately 40 g L-1. Volumetric productivities remained at 2.5 g L-1 h-1 for 5 to 10 hours longer when using K- or Na-bases than when using NH4OH. However, loss of cell viability occurred, and together with the acid inhibition decreased the volumetric productivities. In this study it was demonstrated that by altering the neutralising agent it was possible to increase the period of high volumetric productivity in the anaerobic phase and improve the final succinic acid concentration by almost 100 %
  •  
3.
  • Andersson, Christian, et al. (författare)
  • Inhibition of succinic acid production in metabolically engineered Escherichia Coli by neutralizing agent, organic acids, and osmolarity
  • 2009
  • Ingår i: Biotechnology progress (Print). - : Wiley. - 8756-7938 .- 1520-6033. ; 25:1, s. 116-123
  • Tidskriftsartikel (refereegranskat)abstract
    • The economical viability of biochemical succinic acid production is a result of many processing parameters including final succinic acid concentration, recovery of succinate, and the volumetric productivity. Maintaining volumetric productivities >2.5 g L-1 h(-1) is important if production of succinic acid from. renewable resources should be competitive. In this work, the effects of organic acids, osmolarity, and neutralizing agent (NH4OH, KOH, NaOH, K2CO3, and Na2CO3) on the fermentative succinic acid production by Escherichia coli AFP184 were investigated. The highest concentration of succinic acid, 77 g L-1. was obtained with Na2O3. In general, irrespective of the base used, succinic acid productivity per viable cell was significantly reduced as the concentration of the produced acid increased. Increased osmolarity resulting from base addition during succinate production only marginally affected the productivity per viable cell. Addition of the osmoprotectant glycine betaine to cultures resulted in an increased aerobic growth rate and anaerobic glucose consumption rate, but decreased succinic acid yield. When using NH4OH productivity completely ceased at a succinic acid concentration of similar to 40 g L-1. Volumetric productivities remained at 2.5 g L-1 h(-1) for tip to 10 h longer when K- or Na-bases where used instead of NH4OH. The decrease in cellular succinic acid productivity observed during the anaerobic phase was found to be due to increased organic acid concentrations rather than medium osmolarity.
  •  
4.
  • Andersson, Christian, et al. (författare)
  • Process for producing succinic acid from sucrose
  • 2005
  • Patent (populärvet., debatt m.m.)abstract
    • A process for hydrolyzing sucrose to glucose and fructose using succinic acid is described. The hydrolysate can be used to produce purified glucose and/or fructose or can be used as a carbon source for fermentations to produce various chemicals including succinic acid.
  •  
5.
  • Berglund, Kris, et al. (författare)
  • Fermentative Upgrading of Xylose
  • 2009
  • Ingår i: NWBC-2009. - Helsinki : KCL Re-inventing paper.
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Chemical pulp mills such as Kraft, soda, or sulfite mills are current examples of biorefineries that can convert lignocellulosic biomass into energy, pulp or cellulose derivatives, and tall oil.  While existing viscose pulps use a hemicellulose extraction to generate soluble sugars for ethanol production, in general there still exists a large potential for other more profitable applications of the biomass (Fig. 1), i.e. the mill needs to present a widespread product portfolio.  The biofuels under development from fermentation that will be discussed are the diesel fuel oxygenates dibutyl succinate and diethyl succinate to be used for reduced particulate emissions and fossil fuel replacement for diesel engines and butanol for Otto engines.  It's important to stress that succinic acid, butanol and ethanol, needed for the production of the diesel additives and gasoline replacement will be produced from renewable resources and hence replacing products currently produced from non-renewable fossil sources.  Since wood will be used, there will be no issue of competing with raw material used for food production.  Besides biofuel production, succinic acid and butanol, can be used directly or further refined into numerous different products classified as green chemicals.
  •  
6.
  • Berglund, Kris, et al. (författare)
  • Process for the production of succinic acid
  • 2006
  • Patent (populärvet., debatt m.m.)abstract
    • A process for the production of succinic acid can comprise supplying a media with E. coli AFP 184 and a high sugar concentration under aerobic conditions, then converting the media to aerobic conditions. Such a process can be useful when performed in conjunction with the production of ethanol in a biorefmery .
  •  
7.
  • Enman, Josefine, et al. (författare)
  • Production of the bioactive compound eritadenine by submerged cultivation of shiitake (Lentinus edodes) mycelia
  • 2008
  • Ingår i: Journal of Agricultural and Food Chemistry. - : American Chemical Society (ACS). - 0021-8561 .- 1520-5118. ; 56:8, s. 2609-2612
  • Tidskriftsartikel (refereegranskat)abstract
    • Fruit bodies and mycelia of shiitake mushroom (Lentinus edodes) have been shown to contain the cholesterol-reducing compound eritadenine, 2(R),3(R)-dihydroxy-4-(9-adenyl)butyric acid. In the search for a production method for eritadenine, shiitake mycelia were investigated in the present study. The mycelia were cultivated both in shake flasks and in bioreactors, to investigate the effects of pH, stirring rate, and reactor type on the production and distribution of eritadenine. Both the biomass and the culture broth were examined for their eritadenine content. In the shake flasks, the final concentration of eritadenine was 1.76 mg/L and eritadenine was equally distributed between the mycelia and the growth media. In the bioreactors, the shiitake mycelia were found to contain eritadenine in relatively low levels, whereas the majority, 90.6-98.9%, was detected in the growth media. Applying a stirring rate of 250 rpm during bioreactor cultivation resulted in the highest eritadenine concentrations: 10.23 mg/L when the pH was uncontrolled and 9.59 mg/L when the pH was controlled at 5.7. Reducing the stirring rate to 50 rpm resulted in a decreased eritadenine concentration, both at pH 5.7 (5.25 mg/L) and when pH was not controlled (5.50 mg/L). The mycelia in the shake flask cultures appeared as macroscopic aggregates, whereas mycelia cultivated in bioreactors grew more as freely dispersed filaments. This study demonstrates for the first time the extra- and intracellular distribution of eritadenine produced by shiitake mycelial culture and the influence of reactor conditions on the mycelial morphology and eritadenine concentrations.
  •  
8.
  • Enman, Josefine, et al. (författare)
  • Quantification of the bioactive compound eritadenine in selected strains of shiitake mushroom (Lentinus edodes)
  • 2007
  • Ingår i: Journal of Agricultural and Food Chemistry. - : American Chemical Society (ACS). - 0021-8561 .- 1520-5118. ; 55:4, s. 1177-1180
  • Tidskriftsartikel (refereegranskat)abstract
    • Cardiovascular disease is one of the most common causes of death in the Western world, and a high level of blood cholesterol is considered a risk factor. The edible fungus, shiitake mushroom (Lentinus edodes), contains the hypocholesterolemic agent eritadenine, 2(R),3(R)-dihydroxy-4-(9-adenyl)-butyric acid. This study was conducted to quantify the amount of the cholesterol reducing agent eritadenine in shiitake mushrooms, in search of a potential natural medicine against blood cholesterol. The amounts of eritadenine in the fruit bodies of four different shiitake mushrooms, Le-1, Le-2, Le-A, and Le-B, were investigated in this study. To achieve this goal, methanol extraction was used to recover as much as possible of the hypocholesterolemic agent from the fungal cells. In addition, enzymes that degrade the fungal cell walls were also used to elucidate if the extraction could be further enhanced. To analyze the target compound, a reliable and reproducible HPLC method for separation, identification, and quantification of eritadenine was developed. The shiitake strains under investigation exhibit up to 10 times higher levels of eritadenine than previously reported for other shiitake strains. Further, pretreating the mushrooms with hydrolytic enzymes before methanol extraction resulted in an insignificant increase in the amount of eritadenine released. These results indicate the potential for delivery of therapeutic amounts of eritadenine from the ingestion of extracts or dried concentrates of shiitake mushroom strains.
  •  
9.
  • Enman, Josefine, et al. (författare)
  • Raman analysis of synthetic eritadenine
  • 2008
  • Ingår i: Journal of Raman Spectroscopy. - : Wiley. - 0377-0486 .- 1097-4555. ; 39:10, s. 1464-1468
  • Tidskriftsartikel (refereegranskat)abstract
    • Eritadenine, 2(R),3(R)-dihydroxy-4-(9-adenyl)-butyric acid, is a cholesterol-reducing compound naturally occurring in the shitake mushroom (Lentinus edodes). To identify the unknown Raman spectrum of this compound, pure synthetic eritadenine was examined and the vibrational modes were assigned by following the synthesis pathway. This was accomplished by comparing the known spectra of the starting compounds adenine and D-ribose with the spectra of a synthesis intermediate, methyl 5-(6-Aminopurin-9H-9-yl)-2,3-O-isopropylidene-5-deoxy-β-D-ribofuranoside (MAIR) and eritadenine. In the Raman spectrum of eritadenine, a distinctive vibrational mode at 773 cm-1 was detected and ascribed to vibrations in the carbon chain, ν(C--C). A Raman line that arose at 1212 cm-1, both in the Raman spectrum of MAIR and eritadenine, was also assigned to ν(C--C). Additional Raman lines detected at 1526 and at 1583 cm-1 in the Raman spectrum of MAIR and eritadenine were assigned to ν(N--C) and a deformation of the purine ring structure. In these cases the vibrational modes are due to the linkage between adenine and the ribofuranoside moiety for MAIR, and between adenine and the carbon chain for eritadenine. This link is also the cause for the disappearance of adenine specific Raman lines in the spectrum of both MAIR and eritadenine. Several vibrations observed in the spectrum of D-ribose were not observed in the Raman spectrum of eritadenine due to the absence of the ribose ring structure. In the Raman spectrum of MAIR some of the D-ribose specific Raman lines disappeared due to the introduction of methyl and isopropylidene moieties to the ribose unit. With the approach presented in this study the so far unknown Raman spectrum of eritadenine could be successfully identified and is presented here for the first time.
  •  
10.
  • Helmerius, Jonas, et al. (författare)
  • Production of value added chemicals from xylan extraction in a Kraft pulp mill and the effect on pulp quality
  • 2008
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • In the Kraft process hemicelluloses are lost in the cooking procedure to the black liquor stream, which is subsequently burnt in the recovery boiler to recover cooking chemicals and to produce steam and energy. Hemicelluloses have a low heating value compared to lignin and therefore recovery of hemicelluloses at an earlier stage of the Kraft process followed by biochemical conversionintohighvalue-conversion intohighvalue-into high value-added products might offer a muchbettereconomicopportunity.much better economic opportunityIn collaboration with the research and development department of Smurfit Kappa Kraftliner AB, Piteå, Sweden, alkali and water extractions of birch wood were performed under conditions compatible with the Kraft process, at different times, temperatures and alkali charges. The extraction conditions were set in a range suitable with the current pulp process at Smurfit Kappa Kraftliner. TherequirementsforprocessThe requirements for process configurations, based on either hot water or alkali extraction were also explored. ThexylanyieldsfromdifferentextractiontrialswereThe xylan yields from different extraction trials were measured and the chips from those extraction trials were cooked, refined and turned into sheets of paper. The effects on paper quality were compared with a reference pulp made from the same wooden chips. Recovered xylans from water extracted birch wood chips were subjected to secondary hydrolysis, enzymatic or sulphuricacid.sulphuric acidDetoxification of the hydrolysate with active carbon and regulation of pH were performed before fermentation. FermentationofthexyloseFermentation of the xylose hydrolysate to succinic acid was demonstrated by the use of thethe succinic acid producer Escherichia coli AFP184.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy