SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Rudawski Piotr) srt2:(2019)"

Sökning: WFRF:(Rudawski Piotr) > (2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arnold, Cord L., et al. (författare)
  • Spatiotemporal coupling of attosecond pulses
  • 2019
  • Ingår i: 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019. - 9781728104690 ; Part F140-CLEO_Europe 2019
  • Konferensbidrag (refereegranskat)abstract
    • Attosecond pulses in the extreme ultraviolet (XUV) spectral range are today routinely generated via high-order harmonic generation (HHG), when intense ultrashort laser pulses are focused into a gaseous generation medium. The effect is most easily understood in a semi-classical picture [1]. An electron can tunnel ionize from the distorted atomic potential, pick up kinetic energy in the laser field, potentially return to its parent ion and recombine. The excess energy is emitted as XUV photon. The process repeats for every half-cycle of the driving field, resulting in a train of attosecond pulses and in the frequency domain in the well-known, odd-order comb of harmonics. Two main families of electron trajectories leading to the same photon energy can be distinguished into 'short' and 'long', according to their time of travel in the continuum. Due to the complicated nature of the HHG process, attosecond pulses usually cannot be separated into their temporal and spatial profiles, but instead have strong chromatic aberration and are spatio-temporally coupled [2-4].
  •  
2.
  • Dacasa, Hugo, et al. (författare)
  • Single-shot extreme-ultraviolet wavefront measurements of high-order harmonics
  • 2019
  • Ingår i: Optics Express. - 1094-4087. ; 27:3, s. 2656-2670
  • Tidskriftsartikel (refereegranskat)abstract
    • We perform wavefront measurements of high-order harmonics using an extreme-ultraviolet (XUV) Hartmann sensor and study how their spatial properties vary with different generation parameters, such as pressure in the nonlinear medium, fundamental pulse energy and duration as well as beam size. In some conditions, excellent wavefront quality (up to 휆/11) was obtained. The high throughput of the intense XUV beamline at the Lund Laser Centre allows us to perform single-shot measurements of both the full harmonic beam generated in argon and individual harmonics selected by multilayer mirrors. We theoretically analyze the relationship between the spatial properties of the fundamental and those of the generated high-order harmonics, thus gaining insight into the fundamental mechanisms involved in high-order harmonic generation (HHG).
  •  
3.
  • Major, Balázs, et al. (författare)
  • Effect of plasma-core-induced self-guiding on phase matching of high-order harmonic generation in gases
  • 2019
  • Ingår i: Journal of the Optical Society of America B: Optical Physics. - 0740-3224. ; 36:6, s. 1594-1601
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work, we numerically study a self-guiding process in which ionization plays a dominant role and analyze its effect on high-order harmonic generation (HHG) in gases. Although this type of self-guiding-termed "plasmacore- induced self-guiding" in previous works-limits the achievable cutoff by regulating the intensity of the laser beam, it provides favorable conditions for phase matching, which is indispensable for high-flux-gas highharmonic sources. To underline the role of self-guiding in efficient HHG, we investigate the time-dependent phase-matching conditions in the guided beam and show how the spatiotemporally constant fundamental intensity contributes to the constructive buildup of the harmonic field in a broad photon energy range up to the provided cutoff.
  •  
4.
  • Wikmark, Hampus, et al. (författare)
  • Spatiotemporal coupling of attosecond pulses
  • 2019
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424. ; 116:11, s. 4779-4787
  • Tidskriftsartikel (refereegranskat)abstract
    • The shortest light pulses produced to date are of the order of a few tens of attoseconds, with central frequencies in the extreme UV range and bandwidths exceeding tens of electronvolts. They are often produced as a train of pulses separated by half the driving laser period, leading in the frequency domain to a spectrum of high, odd-order harmonics. As light pulses become shorter and more spectrally wide, the widely used approximation consisting of writing the optical waveform as a product of temporal and spatial amplitudes does not apply anymore. Here, we investigate the interplay of temporal and spatial properties of attosecond pulses. We show that the divergence and focus position of the generated harmonics often strongly depend on their frequency, leading to strong chromatic aberrations of the broadband attosecond pulses. Our argument uses a simple analytical model based on Gaussian optics, numerical propagation calculations, and experimental harmonic divergence measurements. This effect needs to be considered for future applications requiring highquality focusing while retaining the broadband/ultrashort characteristics of the radiation.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy