SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryan M. K.) srt2:(2000-2004)"

Sökning: WFRF:(Ryan M. K.) > (2000-2004)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ziegler, K., et al. (författare)
  • The synthesis of matrices of embedded semiconducting nanowires
  • 2004
  • Ingår i: Faraday discussions. - : Royal Society of Chemistry (RSC). - 1359-6640 .- 1364-5498. ; 125, s. 311-326
  • Tidskriftsartikel (refereegranskat)abstract
    • In this work we report how single crystal nanowires can be assembled into regular arrays using mesoporous thin films to define the architecture. Mesoporous thin films were prepared by a sol-gel method. These provide films of very regular structure and dimensions. The films produced in this way have almost single crystal like structures and can also exhibit strong epitaxy to the underlying silicon substrate. The films are subjected to a supercritical fluid (SCF) environment in which a precursor is decomposed to yield nanowires of metals, semiconductors or oxides. Using these SCF conditions, pore filling is complete and the products are nanowires which are single crystals and structurally aligned in one direction. The growth mechanism of the nanowires is described and size effects discussed.
  •  
2.
  • Ryan, K.M., et al. (författare)
  • Three Dimensional Architectures of Ultra-high Density Semiconducting Nanowires Deposited on Chip
  • 2003
  • Ingår i: Journal of the American Chemical Society. - 0002-7863 .- 1520-5126. ; 125:20, s. 6284-6288
  • Tidskriftsartikel (refereegranskat)abstract
    • We report a "clean" and fast process, utilizing supercritical carbon dioxide, for producing ultrahigh densities, up to 10(12) nanowires per square centimeter, of ordered germanium nanowires on silicon and quartz substrates. Uniform mesoporous thin films were employed as templates for the nucleation and growth of unidirectional nanowire arrays orientated almost perpendicular to a substrate surface. Additionally, these nanocomposite materials display room-temperature photoluminescence (PL), the energy of which is dependent on the diameter of the encased nanowires. The ability to synthesis ultrahigh-density arrays of semiconducting nanowires on-chip is a key step in future "bottom-up" fabrication of multilayered device architectures for nanoelectronic and optoelectronic devices.    
  •  
3.
  • Christlieb, N., et al. (författare)
  • The Hamburg/ESO R-process Enhanced Star survey (HERES). I. Project description, and discovery of two stars with strong enhancements of neutron-capture elements
  • 2004
  • Ingår i: Astronomy & Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 428:3, s. 1027-1037
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a dedicated effort to identify and study metal-poor stars strongly enhanced in r-process elements ([r/Fe]>1 dex; hereafter r-IIstars), the Hamburg/ESO R-process Enhanced Star survey (HERES).Moderate-resolution (∼2 Å) follow-up spectroscopy has been obtained for metal-poor giant candidates selected from the Hamburg/ESO objective-prism survey (HES) as well as the HK survey to identify sharp-lined stars with [Fe/H]<-2.5 dex. For several hundred confirmed metal-poor giants brighter than B∼ 16.5 mag (most of them from theHES), ``snapshot'' spectra (R∼ 20 000; S/N ∼ 30 per pixel) are being obtained with VLT/UVES, with the main aim of finding the 2-3% r-II stars expected to be among them. These are studied in detail by means of higher resolution and higher S/N spectra. In this paper we describe a pilot study based on a set of 35 stars, including 23 from the HK survey,eight from the HES, and four comparison stars. We discovered two new r-II stars, CS 29497-004 ([Eu/Fe]=1.64± 0.22) and CS 29491-069([Eu/Fe]=1.08± 0.23). A first abundance analysis of CS 29497-004 yields that its abundances of Ba to Dy are on average enhanced by 1.5 dex with respect to iron and the Sun and match a scaled solar r-process pattern well, while Th is underabundant relative to that pattern by 0.3dex, which we attribute to radioactive decay. That is, CS 29497-004 seems not to belong to the class of r-process enhanced stars displaying an ``actinide boost'', like CS 31082-001 (Hill et al. 2002), or CS30306-132 (Honda et al. 2004b). The abundance pattern agrees well with predictions of the phenomenological model of Qian & Wasserburg.Based in large part on observations collected at the European Southern Observatory, Paranal, Chile (proposal number 68.B-0320).}
  •  
4.
  • Li, Jian-Liang, et al. (författare)
  • A genome scan for modifiers of age at onset in Huntington disease : The HD MAPS study.
  • 2003
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 73:3, s. 682-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington disease (HD) is caused by the expansion of a CAG repeat within the coding region of a novel gene on 4p16.3. Although the variation in age at onset is partly explained by the size of the expanded repeat, the unexplained variation in age at onset is strongly heritable (h2=0.56), which suggests that other genes modify the age at onset of HD. To identify these modifier loci, we performed a 10-cM density genomewide scan in 629 affected sibling pairs (295 pedigrees and 695 individuals), using ages at onset adjusted for the expanded and normal CAG repeat sizes. Because all those studied were HD affected, estimates of allele sharing identical by descent at and around the HD locus were adjusted by a positionally weighted method to correct for the increased allele sharing at 4p. Suggestive evidence for linkage was found at 4p16 (LOD=1.93), 6p21-23 (LOD=2.29), and 6q24-26 (LOD=2.28), which may be useful for investigation of genes that modify age at onset of HD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy