SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ryderfors Linus) srt2:(2012)"

Sökning: WFRF:(Ryderfors Linus) > (2012)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Opanasyuk, Oleg, 1971-, et al. (författare)
  • On the analyses of fluorescence depolarisation data in the presence of electronic energy migration. : II. Applying & Evaluating Two-Photon Excited Fluorescence
  • 2012
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - 1463-9076 .- 1463-9084. ; 14, s. 1917-1922
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic energy migration within a bifluorophoric molecule has been studied by time-resolved two-photon excited (TPE) fluorescence depolarisation experiments. Data were analysed by using a recently developed quantitative approach [Opanasyuk, O. & Johansson, L. B.-Å., On the Analyses of Fluorescence Depolarisation Data in the Presence of Electronic Energy Migration. I. Theory & General Description. Phys. Chem. Chem. Phys., Submitted.]. The energy migration occurs between the 9-anthrylmethyl groups of the bifluorophoric molecule, bis-(9-anthrylmethylphosphonate) bisteroid. These groups undergo local reorientations, while overall tumbling of the bisteroid is strongly hampered in the used viscous solvent, 1,2-propanediol. To solely obtain information about local reorientations of the 9-anthrylmethyl group, also the mono-(9-anthrylmethylphosphonate) bisteroid was studied, which enabled modelling of the ordering potential shape. The analysis of data is partly performed in the Fourier domain and the best-fit parameters are determined by using an approach based on a Genetic Algorithm. The energy migration process was described by an extended Förster theory (EFT). A reasonable value of the distance between the 9-anthrylmethyl groups is found, as well as for the mutual orientation of the ordering potentials. Furthermore, values of the two-photon tensor components were obtained.
  •  
2.
  • Opanasyuk, Oleg, et al. (författare)
  • On the analyses of fluorescence depolarisation data in the presence of electronic energy migration. Part II : Applying and evaluating two-photon excited fluorescence
  • 2012
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 14:6, s. 1917-1922
  • Tidskriftsartikel (refereegranskat)abstract
    • Electronic energy migration within a bifluorophoric molecule has been studied by time-resolved two-photon excited (TPE) fluorescence depolarisation experiments. Data were analysed by using a recently developed quantitative approach [O. Opanasyuk and L. B.-A. Johansson, On the Analyses of Fluorescence Depolarisation Data in the Presence of Electronic Energy Migration. Part I: Theory and General Description, Phys. Chem. Chem. Phys., submitted]. The energy migration occurs between the 9-anthrylmethyl groups of the bifluorophoric molecule, bis-(9-anthrylmethylphosphonate) bisteroid. These groups undergo local reorientations, while overall tumbling of the bisteroid is strongly hampered in the used viscous solvent, 1,2-propanediol. To solely obtain information about local reorientations of the 9-anthrylmethyl group, also the mono-(9-anthrylmethylphosphonate) bisteroid was studied, which enabled modelling of the ordering potential shape. The analysis of data is partly performed in the Fourier domain and the best-fit parameters are determined by using an approach based on a Genetic Algorithm. The energy migration process was described by an extended Forster theory (EFT). A reasonable value of the distance between the 9-anthrylmethyl groups, as well as for the mutual orientation of the ordering potentials, is found. Furthermore, values of the two-photon tensor components were obtained.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy