SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Säll T.) srt2:(2000-2004)"

Sökning: WFRF:(Säll T.) > (2000-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Säll, T., et al. (författare)
  • Chloroplast DNA indicates a single origin of the allotetraploid Arabidopsis suecica
  • 2003
  • Ingår i: Journal of Evolutionary Biology. - : John Wiley & Sons Inc.. - 1010-061X .- 1420-9101. ; 16:5, s. 1019-1029
  • Tidskriftsartikel (refereegranskat)abstract
    • DNA sequencing was performed on up to 12 chloroplast DNA regions [giving a total of 4288 base pairs (bp) in length] from the allopolyploid Arabidopsis suecica (48 accessions) and its two parental species, A. thaliana (25 accessions) and A. arenosa (seven accessions). Arabidopsis suecica was identical to A. thaliana at all 93 sites where A. thaliana and A. arenosa differed, thus showing that A. thaliana is the maternal parent of A. suecica. Under the assumption that A. thaliana and A. arenosa separated 5 million years ago, we estimated a substitution rate of 2.9 x 10(-9) per site per year in noncoding single copy sequence. Within A. thaliana we found 12 substitution (single bp) and eight insertion/deletion (indel) polymorphisms, separating the 25 accessions into 15 haplotypes. Eight of the A. thaliana accessions from central Sweden formed one cluster, which was separated from a cluster consisting of central European and extreme southern Swedish accessions. This latter cluster also included the A. suecica accessions, which were all identical except for one 5 bp indel. We interpret this low level of variation as a strong indication that A. suecica effectively has a single origin, which we dated at 20 000 years ago or more.
  •  
2.
  • Säll, T., et al. (författare)
  • Primer mixtures in RAPD analysis
  • 2000
  • Ingår i: Hereditas. - 0018-0661 .- 1601-5223. ; 132:3, s. 203-208
  • Tidskriftsartikel (refereegranskat)abstract
    • RAPD (random amplified polymorphic DNA) is a multiplex marker system that conventionally uses single-primer PCR to amplify random DNA fragments. Because of its multiplex nature, it is frequently used in bulked segregant analysis (BSA). In view of the very large numbers of markers BSA often requires, we investigated the use of mixtures of primers as a method of increasing the number of markers available. Theoretically, if a single-primer reaction produces x bands on average, an unrestrained PCR process using a primers should produce xa2 bands. Initially, we investigated mixtures containing from one to five primers. The average number of products increased slightly from the single-primer to the multiple-primer case, whereas it was rather constant for the different multi-primer combinations. This deviation from the theoretical expectations, which we attribute to the effects of competition, shows mixtures of more than two primers to be inefficient. The properties of two-primer mixtures in which the proportions of the two primers were varied were also investigated. The intensities of most of the products were influenced by the proportions of the primers used to create the mixture. A good fit was obtained to a model in which the average competitive ability of a band is directly proportional to the probability of randomly obtaining the band-producing primer combination from the pool of primers. Using two-primer mixtures, a(a-1)/2 different two-primer mixtures can be produced. A comparison of different schemes for constructing the two-primer mixtures indicates that the degree of resampling is similar for all schemes. In conclusion, the use of two-primer mixtures is a simple but very powerful strategy in BSA as it can generate an extremely large number of markers.
  •  
3.
  • Säll, T., et al. (författare)
  • Primer mixtures in RAPD analysis
  • 2000
  • Ingår i: Hereditas. - : BioMed Central Ltd.. - 0018-0661 .- 1601-5223. ; 132:3, s. 203-208
  • Tidskriftsartikel (refereegranskat)abstract
    • RAPD (random amplified polymorphic DNA) is a multiplex marker system that conventionally uses single-primer PCR to amplify random DNA fragments. Because of its multiplex nature, it is frequently used in bulked segregant analysis (BSA). In view of the very large numbers of markers BSA often requires, we investigated the use of mixtures of primers as a method of increasing the number of markers available. Theoretically, if a single-primer reaction produces x bands on average, an unrestrained PCR process using a primers should produce xa2 bands. Initially, we investigated mixtures containing from one to five primers. The average number of products increased slightly from the single-primer to the multiple-primer case, whereas it was rather constant for the different multi-primer combinations. This deviation from the theoretical expectations, which we attribute to the effects of competition, shows mixtures of more than two primers to be inefficient. The properties of two-primer mixtures in which the proportions ofthe two primers were varied were also investigated. The intensities of most of the products were influenced by the proportions of the primers used to create the mixture. A good fit was obtained to a model in which the average competitive ability of a band is directly proportional to the probability of randomly obtaining the band-producing primer combination from the pool of primers. Using two-primer mixtures, a(a-1)/2 different two-primer mixtures can be produced. A comparison of different schemes for constructing the two-primer mixtures indicates that the degree of resampling is similar for all schemes. In conclusion, the use of two-primer mixtures is a simple but very powerful strategy in BSA as it can generate an extremely large number of markers.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy