SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(SEKI K) srt2:(2000-2004)"

Sökning: WFRF:(SEKI K) > (2000-2004)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Sasaki, S, et al. (författare)
  • Dexterous finger movements in primate without monosynaptic corticomotoneuronal excitation
  • 2004
  • Ingår i: Journal of Neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 92:5, s. 3142-3147
  • Tidskriftsartikel (refereegranskat)abstract
    • It is generally accepted that the precision grip and independent finger movements (IFMs) in monkey and man are controlled by the direct (monosynaptic) corticomotoneuronal (CM) pathway. This view is based on previous observations that pyramidotomy causes near permanent deficits of IFMs. However, in addition to the direct CM pathway, pyramidotomy interrupts several corticofugal connections to the brain stem and upper cervical segments. Indirect (oligosynaptic) CM pathways, which are phylogenetically older, have been considered to be of little or no importance in prehension. In three adult macaque monkeys, complete transection of the direct CM pathway was made in C4/C5, which is rostral to the forelimb segments (C6–Th1). Electrophysiological recordings revealed lack of the direct lateral corticospinal tract (LCST) volley, monosynaptic extracellular field potentials in the motor nuclei, and monosynaptic CM excitation. However, a disynaptic volley, disynaptic field potentials and disynaptic CM excitation mediated via C3–C4 propriospinal neurons remained after the lesion. Thus the lesion interrupted the monosynaptic CM pathway and oligosynaptic LCST pathways mediated by interneurons in the forelimb segments. Precision grip and IFMs were observed already after 1–28 days postoperatively. Weakness in force and deficits in preshaping remained for an observation period of 3 mo. Indirect CM pathways may be important for neuro-rehabilitation.
  •  
2.
  • Hallermalm, K, et al. (författare)
  • Tumor necrosis factor-alpha induces coordinated changes in major histocompatibility class I presentation pathway, resulting in increased stability of class I complexes at the cell surface
  • 2001
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 98:4, s. 1108-1115
  • Tidskriftsartikel (refereegranskat)abstract
    • It is demonstrated that similar to interferon γ (IFN-γ), tumor necrosis factor-α (TNF-α) induces coordinated changes at different steps of the major histocompatibility complex (MHC) class I processing and presentation pathway in nonprofessional antigen-presenting cells (APCs). TNF-α up-regulates the expression of 3 catalytic immunoproteasome subunits—LMP2, LMP7, and MECL-1—the immunomodulatory proteasome activator PA28α, the TAP1/TAP2 heterodimer, and the total pool of MHC class I heavy chain. It was also found that in TNF-α–treated cells, MHC class I molecules reconstitute more rapidly and have an increased average half-life at the cell surface. Biochemical changes induced by TNF-α in the MHC class I pathway were translated into increased sensitivity of TNF-α–treated targets to lysis by CD8+ cytotoxic T cells, demonstrating improved presentation of at least certain endogenously processed MHC class I–restricted peptide epitopes. Significantly, it was demonstrated that the effects of TNF-α observed in this experimental system were not mediated through the induction of IFN-γ. It appears to be likely that TNF-α–mediated effects on MHC class I processing and presentation do not involve any intermediate messengers. Collectively, these data demonstrate the existence of yet another biologic activity exerted by TNF-α, namely its capacity to act as a coordinated multi-step modulator of the MHC class I pathway of antigen processing and presentation. These results suggest that TNF-α may be useful when a concerted up-regulation of the MHC class I presentation machinery is required but cannot be achieved by IFN-γ.
  •  
3.
  • Hunt, L, et al. (författare)
  • Gene-specific expression and calcium activation of Arabidopsis thaliana phospholipase C isoforms
  • 2004
  • Ingår i: New Phytologist. - : Wiley. - 1469-8137 .- 0028-646X. ; 162:3, s. 643-654
  • Tidskriftsartikel (refereegranskat)abstract
    • PI-PLCs synthesise the calcium releasing second messenger IP3. We investigated the expression patterns of the Arabidopsis PI-PLC gene family and measured in vitro activity of encoded enzymes. Gene specific RT-PCR and promoter-GUS fusions were used to analyse AtPLC gene expression patterns. The five available AtPLC cDNAs were expressed as fusion proteins in Escherichia coli. All members of the AtPLC gene family were expressed in multiple organs of the plant. AtPLC1, and AtPLC5 expression was localized to the vascular cells of roots and leaves with AtPLC5::GUS also detected in the guard cells. AtPLC4::GUS was detected in pollen and cells of the stigma surface. In seedlings, AtPLC2 and AtPLC3 were constitutively expressed, while AtPLCs 1, 4 and 5 were induced by abiotic stresses. AtPLC1-5 were all shown to have phospholipase C activity in the presence of calcium ions. AtPLCs showed limited tissue specific expression and expression of at least three genes was increased by abiotic stress. The differing calcium sensitivities of recombinant AtPLC protein activities may provide a mechanism for generating calcium signatures.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy