SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sabbi E.) srt2:(2020)"

Sökning: WFRF:(Sabbi E.) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • van Gelder, M. L., et al. (författare)
  • VLT/X-shooter spectroscopy of massive young stellar objects in the 30 Doradus region of the Large Magellanic Cloud
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 636
  • Tidskriftsartikel (refereegranskat)abstract
    • The process of massive star (M >= 8 M-circle dot) formation is still poorly understood. Observations of massive young stellar objects (MYSOs) are challenging due to their rarity, short formation timescale, large distances, and high circumstellar extinction. Here, we present the results of a spectroscopic analysis of a population of MYSOs in the Large Magellanic Cloud. We took advantage of the spectral resolution and wavelength coverage of X-shooter (300-2500 nm), which is mounted on the European Southern Observatory Very Large Telescope, to detect characteristic spectral features in a dozen MYSO candidates near 30 Doradus, the largest starburst region in the Local Group hosting the most massive stars known. The X-shooter spectra are strongly contaminated by nebular emission. We used a scaling method to subtract the nebular contamination from our objects. We detect H alpha, beta, [OI] 630.0 nm, CaII, infrared triplet [FeII] 1643.5 nm, fluorescent FeII 1687.8 nm, H-2 2121.8 nm, Br gamma, and CO bandhead emission in the spectra of multiple candidates. This leads to the spectroscopic confirmation of ten candidates as bona fide MYSOs. We compared our observations with photometric observations from the literature and find all MYSOs to have a strong near-infrared excess. We computed lower limits to the brightness and luminosity of the MYSO candidates, confirming the near-infrared excess and the massive nature of the objects. No clear correlation is seen between the Br gamma luminosity and metallicity. Combining our sample with other LMC samples results in a combined detection rate of disk features, such as fluorescent FeII and CO bandheads, which is consistent with the Galactic rate (40%). Most of our MYSOs show outflow features.
  •  
2.
  • Adamo, Angela, et al. (författare)
  • Star cluster formation in the most extreme environments: Insights from the HiPEEC survey
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 499:3, s. 3267-3294
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the Hubble imaging Probe of Extreme Environments and Clusters (HiPEEC) survey. We fit HST NUV to NIR broad-band and H α fluxes to derive star cluster ages, masses, and extinctions and determine the star formation rate (SFR) of six merging galaxies. These systems are excellent laboratories to trace cluster formation under extreme gas physical conditions, rare in the local Universe, but typical for star-forming galaxies at cosmic noon. We detect clusters with ages of 1-500 Myr and masses that exceed 107 M☉. The recent cluster formation history and their distribution within the host galaxies suggest that systems such as NGC 34, NGC 1614, and NGC 4194 are close to their final coalescing phase, while NGC 3256, NGC 3690, and NGC 6052 are at an earlier/intermediate stage. A Bayesian analysis of the cluster mass function in the age interval 1-100 Myr provides strong evidence in four of the six galaxies that an exponentially truncated power law better describes the observed mass distributions. For two galaxies, the fits are inconclusive due to low number statistics. We determine power-law slopes β ∼ −1.5 to −2.0 and truncation masses, Mc, between 106 and a few times 107 M☉, among the highest values reported in the literature. Advanced mergers have higher Mc than early/intermediate merger stage galaxies, suggesting rapid changes in the dense gas conditions during the merger. We compare the total stellar mass in clusters to the SFR of the galaxy, finding that these systems are among the most efficient environments to form star clusters in the local Universe.
  •  
3.
  • Elmegreen, Bruce G., et al. (författare)
  • Spatial Segregation of Massive Clusters in Dwarf Galaxies
  • 2020
  • Ingår i: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 888:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The relative average minimum projected separations of star clusters in the Legacy ExtraGalactic UV Survey (LEGUS) and in tidal dwarfs around the interacting galaxy NGC 5291 are determined as a function of cluster mass to look for cluster-cluster mass segregation. Class 2 and 3 LEGUS clusters, which have a more irregular internal structure than the compact and symmetric class 1 clusters, are found to be mass-segregated in low-mass galaxies, which means that the more massive clusters are systematically bunched together compared to the lower-mass clusters. This mass segregation is not present in high-mass galaxies or class 1 clusters. We consider possible causes for this segregation, including differences in cluster formation and scattering in the shallow gravitational potentials of low-mass galaxies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy