SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sadd Matthew 1994) srt2:(2024)"

Sökning: WFRF:(Sadd Matthew 1994) > (2024)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Klein, Antoine, 1998, et al. (författare)
  • Identifying the Role of Electrolyte Additives for Lithium Plating on Graphite Electrode by Operando X-ray Tomography
  • 2024
  • Ingår i: Batteries and Supercaps. - 2566-6223. ; 49:12, s. 5060-5083
  • Tidskriftsartikel (refereegranskat)abstract
    • The plating of lithium metal on the graphite electrode is a major degradation mechanism in lithium-ion batteries (LIBs). It brings a significant risk of internal shortcircuit by penetration of dendritic lithium through the separator, leading to short cycle life and safety issues. Understanding how and when plating occurs is crucial for the development of mitigation strategies, e. g. tuning the electrolyte composition. Here we present an operando X-ray tomographic microscopy (XTM) study to directly monitor the plating of lithium metal in a lithium/graphite cell. XTM enables a non-destructive and quantitative characterization at operando conditions of lithium deposition on a graphite electrode at relevant conditions. In this work it allows us to probe the role of the electrolyte additives vinylene carbonate (VC) and lithium bis(fluorosulfonyl)imide (LiFSI) in the standard LIB electrolyte LP57 (base electrolyte without additives). The additives show overall better performances in terms of delayed onset of lithium plating which is important for the utilisation of the full capacity of graphite intercallaiton. We show that there is a transition during lithiation of the dominating mechanism, once lithium plating is initiated this rapidly becomes dominating and hinders further intercalation. For the base electrolyte a homogeneous and dense morphology of plated lithium is found, whereas a more dendritic morphology is observed in the presence of additives. During delithiation, there is a rapid stripping of some of the plated lithium followed by deintercalation. In addition, our work provides a general methodology to track the morphology of plated lithium, which is crucial for fundamental research about battery safety.
  •  
2.
  • Lacarbonara, Giampaolo, et al. (författare)
  • Operando insights into ammonium-mediated lithium metal stabilization: surface morphology modulation and enhanced SEI development
  • 2024
  • Ingår i: Journal of Colloid and Interface Science. - 1095-7103 .- 0021-9797. ; 669, s. 699-711
  • Tidskriftsartikel (refereegranskat)abstract
    • Lithium-ion batteries (LiBs) with graphite as an anode and lithiated transition metal oxide as a cathode are approaching their specific energy and power theoretical values. To overcome the limitations of LiBs, lithium metal anode with high specific capacity and low negative redox potential is necessary. However, practical application in rechargeable cells is hindered by uncontrolled lithium deposition manifesting, for instance, as Li dendrite growth which can cause formation of dead Li, short circuits and cell failure. The electrochemical behaviour of a protic additive (NH4PF6) in a carbonate-based electrolyte has been investigated by operando confocal Raman spectroscopy, in situ optical microscopy, and X-ray photoelectron spectroscopy, elucidating its functional mechanism. The ammonium cation promotes a chemical modification of the lithium metal anode-electrolyte interphase by producing an N-rich solid electrolyte interphase and chemically modifying the lithium surface morphology by electrochemical pitting. This novel method results in stable lithium deposition and stripping by a decreasing the local current density on the electrode, thus limiting dendritic deposition.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy