SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Saiz A) srt2:(2015-2019)"

Sökning: WFRF:(Saiz A) > (2015-2019)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Kuhle, J., et al. (författare)
  • Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study
  • 2015
  • Ingår i: Multiple Sclerosis Journal. - : SAGE Publications. - 1352-4585 .- 1477-0970. ; 21:8, s. 1013-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective: We explored which clinical and biochemical variables predict conversion from clinically isolated syndrome (CIS) to clinically definite multiple sclerosis (CDMS) in a large international cohort. Methods: Thirty-three centres provided serum samples from 1047 CIS cases with at least two years' follow-up. Age, sex, clinical presentation, T2-hyperintense lesions, cerebrospinal fluid (CSF) oligoclonal bands (OCBs), CSF IgG index, CSF cell count, serum 25-hydroxyvitamin D3 (25-OH-D), cotinine and IgG titres against Epstein-Barr nuclear antigen 1 (EBNA-1) and cytomegalovirus were tested for association with risk of CDMS. Results: At median follow-up of 4.31 years, 623 CIS cases converted to CDMS. Predictors of conversion in multivariable analyses were OCB (HR = 2.18, 95% CI = 1.71-2.77, p < 0.001), number of T2 lesions (two to nine lesions vs 0/1 lesions: HR = 1.97, 95% CI = 1.52-2.55, p < 0.001; >9 lesions vs 0/1 lesions: HR = 2.74, 95% CI = 2.04-3.68, p < 0.001) and age at CIS (HR per year inversely increase = 0.98, 95% CI = 0.98-0.99, p < 0.001). Lower 25-OH-D levels were associated with CDMS in univariable analysis, but this was attenuated in the multivariable model. OCB positivity was associated with higher EBNA-1 IgG titres. Conclusions: We validated MRI lesion load, OCB and age at CIS as the strongest independent predictors of conversion to CDMS in this multicentre setting. A role for vitamin D is suggested but requires further investigation.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Spolaor, A., et al. (författare)
  • Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow
  • 2019
  • Ingår i: Atmospheric Chemistry and Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 19:20, s. 13325-13339
  • Tidskriftsartikel (refereegranskat)abstract
    • Sunlit snow is highly photochemically active and plays a key role in the exchange of gas phase species between the cryosphere and the atmosphere. Here, we investigate the behaviour of two selected species in surface snow: mercury (Hg) and iodine (I). Hg can deposit year-round and accumulate in the snowpack. However, photo-induced re-emission of gas phase Hg from the surface has been widely reported. Iodine is active in atmospheric new particle formation, especially in the marine boundary layer, and in the destruction of atmospheric ozone. It can also undergo photochemical re-emission. Although previous studies indicate possible post-depositional processes, little is known about the diurnal behaviour of these two species and their interaction in surface snow. The mechanisms are still poorly constrained, and no field experiments have been performed in different seasons to investigate the magnitude of re-emission processes Three sampling campaigns conducted at an hourly resolution for 3 d each were carried out near Ny-Alesund (Svalbard) to study the behaviour of mercury and iodine in surface snow under different sunlight and environmental conditions (24 h darkness, 24 h sunlight and day-night cycles). Our results indicate a different behaviour of mercury and iodine in surface snow during the different campaigns. The day-night experiments demonstrate the existence of a diurnal cycle in surface snow for Hg and iodine, indicating that these species are indeed influenced by the daily solar radiation cycle. Differently, bromine did not show any diurnal cycle. The diurnal cycle also disappeared for Hg and iodine during the 24 h sunlight period and during 24 h darkness experiments supporting the idea of the occurrence (absence) of a continuous recycling or exchange at the snow-air interface. These results demonstrate that this surface snow recycling is seasonally dependent, through sunlight. They also highlight the non-negligible role that snowpack emissions have on ambient air concentrations and potentially on iodine-induced atmospheric nucleation processes.
  •  
10.
  • Abrahamsson, Katarina, 1957, et al. (författare)
  • Organic bromine compounds produced in sea ice in Antarctic winter
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • During polar springtime, active bromine drives ozone, a greenhouse gas, to near-zero levels. Bromine production and emission in the polar regions have so far been assumed to require sunlight. Here, we report measurements of bromocarbons in sea ice, snow, and air during the Antarctic winter that reveal an unexpected new source of organic bromine to the atmosphere during periods of no sunlight. The results show that Antarctic winter sea ice provides 10 times more bromocarbons to the atmosphere than Southern Ocean waters, and substantially more than summer sea ice. The inclusion of these measurements in a global climate model indicates that the emitted bromocarbons will disperse throughout the troposphere in the southern hemisphere and through photochemical degradation to bromine atoms, contribute similar to 10% to the tropospheric reactive bromine budget. Combined together, our results suggest that winter sea ice could potentially be an important source of atmospheric bromine with implications for atmospheric chemistry and climate at a hemispheric scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy