SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sakaguchi K.) srt2:(2020-2023)"

Sökning: WFRF:(Sakaguchi K.) > (2020-2023)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Watanabe, A., et al. (författare)
  • Association of aberrant ASNS imprinting with asparaginase sensitivity and chromosomal abnormality in childhood BCP-ALL
  • 2020
  • Ingår i: Blood. - : American Society of Hematology. - 0006-4971 .- 1528-0020. ; 136:20, s. 2319-2333
  • Tidskriftsartikel (refereegranskat)abstract
    • Karyotype is an important prognostic factor in childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL), but the underlying pharmacogenomics remain unknown. Asparaginase is an integral component in current chemotherapy for childhood BCP-ALL. Asparaginase therapy depletes serum asparagine. Normal hematopoietic cells can produce asparagine by asparagine synthetase (ASNS) activity, but ALL cells are unable to synthesize adequate amounts of asparagine. The ASNS gene has a typical CpG island in its promoter. Thus, methylation of the ASNS CpG island could be one of the epigenetic mechanisms for ASNS gene silencing in BCP-ALL. To gain deep insights into the pharmacogenomics of asparaginase therapy, we investigated the association of ASNS methylation status with asparaginase sensitivity. The ASNS CpG island is largely unmethylated in normal hematopoietic cells, but it is allele-specifically methylated in BCP-ALL cells. The ASNS gene is located at 7q21, an evolutionally conserved imprinted gene cluster. ASNS methylation in childhood BCP-ALL is associated with an aberrant methylation of the imprinted gene cluster at 7q21. Aberrant methylation of mouse Asns and a syntenic imprinted gene cluster is also confirmed in leukemic spleen samples from ETV6-RUNX1 knockin mice. In 3 childhood BCP-ALL cohorts, ASNS is highly methylated in BCP-ALL patients with favorable karyotypes but is mostly unmethylated in BCP-ALL patients with poor prognostic karyotypes. Higher ASNS methylation is associated with higher L-asparaginase sensitivity in BCP-ALL through lower ASNS gene and protein expression levels. These observations demonstrate that silencing of the ASNS gene as a result of aberrant imprinting is a pharmacogenetic mechanism for the leukemia-specific activity of asparaginase therapy in BCP-ALL.
  •  
5.
  • Nguyen, Thanh N, et al. (författare)
  • Global Impact of the COVID-19 Pandemic on Stroke Volumes and Cerebrovascular Events: A 1-Year Follow-up.
  • 2023
  • Ingår i: Neurology. - 1526-632X. ; 100:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Declines in stroke admission, IV thrombolysis (IVT), and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the effect of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), IVT, and mechanical thrombectomy over a 1-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020).We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, IVT treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases.There were 148,895 stroke admissions in the 1 year immediately before compared with 138,453 admissions during the 1-year pandemic, representing a 7% decline (95% CI [95% CI 7.1-6.9]; p < 0.0001). ICH volumes declined from 29,585 to 28,156 (4.8% [5.1-4.6]; p < 0.0001) and IVT volume from 24,584 to 23,077 (6.1% [6.4-5.8]; p < 0.0001). Larger declines were observed at high-volume compared with low-volume centers (all p < 0.0001). There was no significant change in mechanical thrombectomy volumes (0.7% [0.6-0.9]; p = 0.49). Stroke was diagnosed in 1.3% [1.31-1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82-2.97], 5,656/195,539) of all stroke hospitalizations.There was a global decline and shift to lower-volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared with the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year.This study is registered under NCT04934020.
  •  
6.
  •  
7.
  • Nakamura, M., et al. (författare)
  • Experimental verification of SDN/NFV in integrated mmwave access and mesh backhaul networks
  • 2021
  • Ingår i: IEICE transactions on communications. - : Institute of Electronics, Information and Communication, Engineers, IEICE. - 0916-8516 .- 1745-1345. ; E104B:3, s. 217-228
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, a Proof-of-Concept (PoC) architecture is constructed, and the effectiveness of mmWave overlay heterogeneous network (HetNet) with mesh backhaul utilizing route-multiplexing and Multi-access Edge Computing (MEC) utilizing prefetching algorithm is verified by measuring the throughput and the download time of real contents. The architecture can cope with the intensive mobile data traffic since data delivery utilizes multiple backhaul routes based on the mesh topology, i.e. route-multiplexing mechanism. On the other hand, MEC deploys the network edge contents requested in advance by nearby User Equipment (UE) based on pre-registered context information such as location, destination, demand application, etc. to the network edge, which is called prefetching algorithm. Therefore, mmWave access can be fully exploited even with capacity-limited backhaul networks by introducing the proposed algorithm. These technologies solve the problems in conventional mmWave HetNet to reduce mobile data traffic on backhaul networks to cloud networks. In addition, the proposed architecture is realized by introducing wireless Software Defined Network (SDN) and Network Function Virtualization (NFV). In our architecture, the network is dynamically controlled via wide-coverage microwave band links by which UE's context information is collected for optimizing the network resources and controlling network infrastructures to establish backhaul routes and MEC servers. In this paper, we develop the hardware equipment and middleware systems, and introduce these algorithms which are used as a driver of IEEE802.11ad and open source software. For 5G and beyond, the architecture integrated in mmWave backhaul, MEC and SDN/NFV will support some scenarios and use cases.
  •  
8.
  • Ghaffari, K, et al. (författare)
  • NCK-associated protein 1 like (nckap1l) minor splice variant regulates intrahepatic biliary network morphogenesis
  • 2021
  • Ingår i: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404. ; 17:3, s. e1009402-
  • Tidskriftsartikel (refereegranskat)abstract
    • Impaired formation of the intrahepatic biliary network leads to cholestatic liver diseases, which are frequently associated with autoimmune disorders. Using a chemical mutagenesis strategy in zebrafish combined with computational network analysis, we screened for novel genes involved in intrahepatic biliary network formation. We positionally cloned a mutation in thenckap1lgene, which encodes a cytoplasmic adaptor protein for the WAVE regulatory complex. The mutation is located in the last exon after the stop codon of the primary splice isoform, only disrupting a previously unannotated minor splice isoform, which indicates that the minor splice isoform is responsible for the intrahepatic biliary network phenotype. CRISPR/Cas9-mediatednckap1ldeletion, which disrupts both the primary and minor isoforms, showed the same defects. In the liver ofnckap1lmutant larvae, WAVE regulatory complex component proteins are degraded specifically in biliary epithelial cells, which line the intrahepatic biliary network, thus disrupting the actin organization of these cells. We further show thatnckap1lgenetically interacts with the Cdk5 pathway in biliary epithelial cells. These data together indicate that althoughnckap1lwas previously considered to be a hematopoietic cell lineage-specific protein, its minor splice isoform acts in biliary epithelial cells to regulate intrahepatic biliary network formation.
  •  
9.
  •  
10.
  • Milosevic, Jelena, et al. (författare)
  • PPM1D is a neuroblastoma oncogene and therapeutic target in childhood neural tumors
  • 2020
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Majority of cancers harbor alterations of the tumor suppressor TP53. However, childhood cancers, including unfavorable neuroblastoma, often lack TP53 mutations despite frequent loss of p53 function, suggesting alternative p53 inactivating mechanisms.Here we show that p53-regulating PPM1D at chromosome 17q22.3 is linked to aggressive tumors and poor prognosis in neuroblastoma. We identified that WIP1-phosphatase encoded by PPM1D, is activated by frequent segmental 17q-gain further accumulated during clonal evolution, gene-amplifications, gene-fusions or gain-of-function somatic and germline mutations. Pharmacological and genetic manipulation established WIP1 as a druggable target in neuroblastoma. Genome-scale CRISPR-Cas9 screening demonstrated PPM1D genetic dependency in TP53 wild-type neuroblastoma cell lines, and shRNA PPM1D knockdown significantly delayed in vivo tumor formation. Establishing a transgenic mouse model overexpressing PPM1D showed that these mice develop cancers phenotypically and genetically similar to tumors arising in mice with dysfunctional p53 when subjected to low-dose irradiation. Tumors include T-cell lymphomas harboring Notch1-mutations, Pten-deletions and p53-accumulation, adenocarcinomas and PHOX2B-expressing neuroblastomas establishing PPM1D as a bona fide oncogene in wtTP53 cancer and childhood neuroblastoma. Pharmacological inhibition of WIP1 suppressed the growth of neural tumors in nude mice proposing WIP1 as a therapeutic target in neural childhood tumors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy