SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sakamoto K) srt2:(2005-2009)"

Sökning: WFRF:(Sakamoto K) > (2005-2009)

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Tanvir, N. R., et al. (författare)
  • A γ-ray burst at a redshift of z~8.2
  • 2009
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 461, s. 1254-1257
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z>20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB090423 lies at a redshift of z~8.2, implying that massive stars were being produced and dying as GRBs ~630Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  •  
7.
  •  
8.
  • Aalto, Susanne, 1964, et al. (författare)
  • High-resolution HNC 3-2 SMA observations of Arp 220
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 493:2, s. 481-487
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. We study the properties of the nuclear molecular gas of the ultra luminous merger Arp 220 and effects of the nuclear source on gas excitation and chemistry. Specifically, our aim is to investigate the spatial location of the luminous HNC 3-2 line emission and address the underlying cause of its unusual brightness.Methods. We present high resolution observations of HNC J=3-2 with the submillimeter array (SMA).Results. We find luminous HNC 3-2 line emission in the western part of Arp 220, centred on the western nucleus, while the eastern side of the merger shows relatively faint emission. A bright (36 K at $0\hbox{$.\!\!^{\prime\prime}$ }4$ resolution), narrow (60 ${\rm km~s}^$) emission feature emerges from the western nucleus, superposed on a broader spectral component. A possible explanation is weak maser emission through line-of-sight amplification of the background continuum source. There is also a more extended HNC 3-2 emission feature north and south of the nucleus. This feature resembles the bipolar OH maser morphology around the western nucleus. Substantial HNC abundances are required to explain the bright line emission from this warm environment - even when the high gas column density towards the western nucleus is taken into account. We discuss this briefly in the context of an X-ray affected chemistry and radiative excitation.Conclusions. The luminous and possibly amplified HNC emission of the western nucleus of the Arp 220 merger reflects the unusual, and perhaps transient environment of the starburst/AGN activity there. The faint HNC line emission towards Arp 220-east reveals a real difference in physical conditions between the two merger nuclei.
  •  
9.
  •  
10.
  • Mancusi, Davide, 1980, et al. (författare)
  • Calculation of Energy-Deposition Distributions and Microdosimetric Estimation of the Biological Effect of a 9C Beam
  • 2009
  • Ingår i: Radiation and Environmental Biophysics. - 1432-2099 .- 0301-634X. ; 48:2, s. 135-143
  • Tidskriftsartikel (refereegranskat)abstract
    • Among the alternative beams being recently considered for external cancer radiotherapy, C-9 has received some attention because it is expected that its biological effectiveness could be boosted by the beta-delayed emission of two alpha particles and a proton that takes place at the ion-stopping site. Experiments have been performed to characterise this exotic beam physically and models have been developed to estimate quantitatively its biological effect. Here, the particle and heavy-ion transport code system (PHITS ) is used to calculate energy-deposition and linear energy transfer distributions for a C-9 beam in water and the results are compared with published data. Although PHITS fails to reproduce some of the features of the distributions, it suggests that the decay of C-9 contributes negligibly to the energy-deposition distributions, thus contradicting the previous interpretation of the measured data. We have also performed a microdosimetric calculation to estimate the biological effect of the decay, which was found to be negligible; previous microdosimetric Monte-Carlo calculations were found to be incorrect. An analytical argument, of geometrical nature, confirms this conclusion and gives a theoretical upper bound on the additional biological effectiveness of the decay. However, no explanation can be offered at present for the observed difference in the biological effectiveness between C-9 and C-12; the reproducibility of this surprising result will be verified in coming experiments.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy