SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Salasnich B.) srt2:(2017)"

Sökning: WFRF:(Salasnich B.) > (2017)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chauvin, G., et al. (författare)
  • Discovery of a warm, dusty giant planet around HIP 65426
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 605
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. The SHINE program is a high-contrast near-infrared survey of 600 young, nearby stars aimed at searching for and characterizing new planetary systems using VLT/SPHERE's unprecedented high-contrast and high-angular-resolution imaging capabilities. It is also intended to place statistical constraints on the rate, mass and orbital distributions of the giant planet population at large orbits as a function of the stellar host mass and age to test planet-formation theories.Methods. We used the IRDIS dual-band imager and the IFS integral field spectrograph of SPHERE to acquire high-contrast coronagraphic differential near-infrared images and spectra of the young A2 star HIP 65426. It is a member of the similar to 17 Myr old Lower Centaurus-Crux association. Results. At a separation of 830 mas (92 au projected) from the star, we detect a faint red companion. Multi-epoch observations confirm that it shares common proper motion with HIP 65426. Spectro-photometric measurements extracted with IFS and IRDIS between 0.95 and 2.2 mu m indicate a warm, dusty atmosphere characteristic of young low-surface-gravity L5-L7 dwarfs. Hot-start evolutionary models predict a luminosity consistent with a 6-12 M-Jup, T-eff = 1300-1600K and R = 1.5 +/- 0.1 R-Jup giant planet. Finally, the comparison with Exo-REM and PHOENIX BT-Settl synthetic atmosphere models gives consistent effective temperatures but with slightly higher surface gravity solutions of log(g) = 4.0-5.0 with smaller radii (1.0-1.3 R-Jup).Conclusions. Given its physical and spectral properties, HIP 65426 b occupies a rather unique placement in terms of age, mass, and spectral-type among the currently known imaged planets. It represents a particularly interesting case to study the presence of clouds as a function of particle size, composition, and location in the atmosphere, to search for signatures of non-equilibrium chemistry, and finally to test the theory of planet formation and evolution.
  •  
2.
  • Mesa, D., et al. (författare)
  • Upper limits for mass and radius of objects around Proxima Cen from SPHERE/VLT
  • 2017
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966 .- 1745-3925 .- 1745-3933. ; 466:1, s. l118-L122
  • Tidskriftsartikel (refereegranskat)abstract
    • The recent discovery of an earth-like planet around Proxima Centauri has drawn much attention to this star and its environment. We performed a series of observations of Proxima Centauri using Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), the planet-finder instrument installed at the European Southern Observatory (ESO) Very Large Telescope (VLT) UT3, using its near-infrared modules, InfraRed Dual-band Imager and Spectrograph (IRDIS) and IFS. No planet was detected directly, but we set upper limits on the mass up to 7 au by exploiting the AMES-COND models. Our IFS observations reveal that no planet more massive than similar to 6-7 M-Jup can be present within 1 au. The dual-band imaging camera IRDIS also enables us to probe larger separations than other techniques such as radial velocity or astrometry. We obtained mass limits of the order of 4 M-Jup at separations of 2 au or larger, representing the most stringent mass limits at separations larger than 5 au available at the moment. We also made an attempt to estimate the radius of possible planets around Proxima using the reflected light. Since the residual noise for the observations is dominated by photon noise and thermal background, longer exposures in good observing conditions could improve the achievable contrast limit further.
  •  
3.
  • Bonavita, M., et al. (författare)
  • Orbiting a binary SPHERE characterisation of the HD 284149 system
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 608
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. In this paper we present the results of the SPHERE observation of the HD 284149 system, aimed at a more detailed characterisation of both the primary and its brown dwarf companion.Methods. We observed HD 284149 in the near-infrared with SPHERE, using the imaging mode (IRDIS + IFS) and the long-slit spectroscopy mode (IRDIS-LSS). The data were reduced using the dedicated SPHERE pipeline, and algorithms such as PCA and TLOCI were applied to reduce the speckle pattern.Results. The IFS images revealed a previously unknown low-mass (similar to 0.16 M-circle dot) stellar companion (HD 294149 B) at similar to 0.1 '', compatible with previously observed radial velocity differences, as well as proper motion differences between Gaia and Tycho-2 measurements. The known brown dwarf companion (HD 284149 b) is clearly visible in the IRDIS images. This allowed us to refine both its photometry and astrometry. The analysis of the medium resolution IRDIS long slit spectra also allowed a refinement of temperature and spectral type estimates. A full reassessment of the age and distance of the system was also performed, leading to more precise values of both mass and semi-major axis.Conclusions. As a result of this study, HD 284149 ABb therefore becomes the latest addition to the (short) list of brown dwarfs on wide circumbinary orbits, providing new evidence to support recent claims that object in such configuration occur with a similar frequency to wide companions to single stars.
  •  
4.
  • Engler, N., et al. (författare)
  • The HIP 79977 debris disk in polarized light
  • 2017
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 607
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Debris disks are observed around 10 to 20% of FGK main-sequence stars as infrared excess emission. They are important signposts for the presence of colliding planetesimals and therefore provide important information about the evolution of planetary systems. Direct imaging of such disks reveals their geometric structure and constrains their dust-particle properties. Aims. We present observations of the known edge-on debris disk around HIP 79977 (HD 146897) taken with the ZIMPOL differential polarimeter of the SPHERE instrument. We measure the observed polarization signal and investigate the diagnostic potential of such data with model simulations. Methods. SPHERE-ZIMPOL polarimetric data of the 15 Myr-old F star HIP 79977 (Upper Sco, 123 pc) were taken in the Very Broad Band (VBB) filter (lambda(c) = 735 nm, Delta lambda = 290 nm) with a spatial resolution of about 25 mas. Imaging polarimetry efficiently suppresses the residual speckle noise from the AO system and provides a differential signal with relatively small systematic measuring uncertainties. We measure the polarization flux along and perpendicular to the disk spine of the highly inclined disk for projected separations between 0 : 200 (25 AU) and 1 : 600 (200 AU). We perform model calculations for the polarized flux of an optically thin debris disk which are used to determine or constrain the disk parameters of HIP 79977. Results. We measure a polarized flux contrast ratio for the disk of (F-pol) disk/F-* = (5 : 5 +/- 0 : 9) x 10(-4) in the VBB filter. The surface brightness of the polarized flux reaches a maximum of SBmax = 16.2 mag arcsec(-2) at a separation of 0 : 200 -0 : 500 along the disk spine with a maximum surface brightness contrast of 7 : 64 mag arcsec(-2). The polarized flux has a minimum near the star < 0 : 200 because no or only little polarization is produced by forward or backward scattering in the disk section lying in front of or behind the star. The width of the disk perpendicular to the spine shows a systematic increase in FWHM from 0 : 1 (12 AU) to 0 : 3 -0.5, when going from a separation of 0 : 2 to > 1. This can be explained by a radial blow-out of small grains. The data are modelled as a circular dust belt with a well defined disk inclination i = 85(+/- 1 : 5)degrees and a radius between r(0) = 60 and 90 AU. The radial density dependence is described by (r/r(0))alpha with a steep (positive) power law index alpha = 5 inside r(0) and a more shallow (negative) index alpha = -2 : 5 outside r(0). The scattering asymmetry factor lies between g = 0.2 and 0.6 (forward scattering) adopting a scattering-angle dependence for the fractional polarization such as that for Rayleigh scattering. Conclusions. Polarimetric imaging with SPHERE-ZIMPOL of the edge-on debris disk around HIP 79977 provides accurate profiles for the polarized flux. Our data are qualitatively very similar to the case of AU Mic and they confirm that edge-on debris disks have a polarization minimum at a position near the star and a maximum near the projected separation of the main debris belt. The comparison of the polarized flux contrast ratio (F-pol)(disk)/F* with the fractional infrared excess provides strong constraints on the scattering albedo of the dust.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy