SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Samuelsson V) srt2:(1990-1994)"

Sökning: WFRF:(Samuelsson V) > (1990-1994)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • BORODIN, V, et al. (författare)
  • THE EFFECT OF LIGHT QUALITY ON THE INDUCTION OF EFFICIENT PHOTOSYNTHESIS UNDER LOW CO2 CONDITIONS IN CHLAMYDOMONAS-REINHARDTII AND CHLORELLA-PYRENOIDOSA
  • 1994
  • Ingår i: Physiologia Plantarum. - 0031-9317 .- 1399-3054. ; 92:2, s. 254-260
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of blue and red light on the adaptation to low CO2 conditions was studied in high-CO2 grown cultures of Chlorella pyrenoidosa (82T) and Chlamydomonas reinhardtii (137(+)) by measuring O-2 exchange under various inorganic carbon (C-i) concentrations. At equal photosynthetic photon flux density (PPFD), blue light was more favourable for adaptation in both species, compared to red light. The difference in photosynthetic oxygen evolution between cells adapted to low C-i under blue and red light was more pronounced when oxygen evolution was measured under low C-i compared to high C-i conditions. The effect of light quality on adaptation remained for several hours. The different effects caused by blue and red light was observed in C. pyrenoidosa over a wide range of PPFD with increasing differences at increasing PPFD. The maximal difference was obtained at a PPFD above 1 500 mu mol m(-2) s(-1). We found no difference in the extracellular carbonic anhydrase activity between blue- and red light adapted cells. The light quality effect recorded under C-i-limiting conditions in C. reinhardtii cells adapted to air, was only 37% less when instead of pure blue light red light containing 12.5% of blue light (similar PPFD as blue light) was used during adaptation to low carbon. This indicates that in addition to affecting photosynthesis, blue light affected a sensory system involved in algal adaptation to low C-i conditions. Since the affinity for C-i of C. pyrenoidosa and C. reinhardtii cells adapted to air under blue light was higher than that of cells adapted under red light, we suggest that induction of some component(s) of the C-i accumulating mechanism is regulated by the light quality.
  •  
2.
  • Landin-Olsson, Mona, et al. (författare)
  • Immunoreactive trypsin(Ogen) in the sera of children with recent-onset insulin-dependent diabetes and matched controls
  • 1990
  • Ingår i: Pancreas. - : Ovid Technologies (Wolters Kluwer Health). - 0885-3177. ; 5:3, s. 241-247
  • Tidskriftsartikel (refereegranskat)abstract
    • To evaluate the exocrine pancreatic function at the time of diagnosis of insulin-dependent diabetes mellitus, we determined immunoreactive an-odal and cathodal trypsin(ogen) levels in sera from almost all children (n = 375) 0-14 years of age in Sweden in whom diabetes developed during 1 year, and in sex-, age-, and geographically matched control subjects (n = 312). The median level of anodal trypsin(ogen) was 5 (quartile range, 3-7) µg/L in children with newly diagnosed diabetes, compared with a median level of 7 (quartile range, 4-8) µg/L in control subjects (p < 0.0001). Similarly, the median level of cathodal trypsin(ogen) was 8 (quartile range, 4-10) µg/L in children with diabetes, compared with a median level of 11 (quartile range, 7-15) µg/L in control subjects (p < 0.0001). The median of the individual ratios between cathodal and anodal trypsin(ogen) was 1.4 in the diabetic patients and 1.7 in the control children (p < 0.001). In a multivariate test, however, only the decrease in cathodal trypsin(ogen) concentration was associated with diabetes. The levels of trypsin(ogen)s did not correlate with levels of islet cell antibodies, present in 81% of the diabetic children. Several mechanisms may explain our findings, for example, similar pathogenetic factors may affect both the endocrine and exocrine pancreas simultaneously, a failing local trophic stimulation by insulin on the exocrine cells may decrease the trypsinogen production, and there may be an increased elimination of trypsin(ogen) because of higher filtration through the kidneys in the hyperglycemic state.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy