SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sand H.) srt2:(2020-2024)"

Sökning: WFRF:(Sand H.) > (2020-2024)

  • Resultat 1-10 av 24
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Allentoft, Morten E., et al. (författare)
  • Population genomics of post-glacial western Eurasia
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625:7994, s. 301-311
  • Tidskriftsartikel (refereegranskat)abstract
    • Western Eurasia witnessed several large-scale human migrations during the Holocene1–5. Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes—mainly from the Mesolithic and Neolithic periods—from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a ‘great divide’ genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 bp, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 bp, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a ‘Neolithic steppe’ cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations.
  •  
2.
  • Brennan, S. J., et al. (författare)
  • Photometric and spectroscopic evolution of the interacting transient AT 2016jbu(Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5642-5665
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV ∼ −18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s−1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s−1 seen in broad absorption from some high-velocity material. Late-time spectra (∼+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He I, and Ca II. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients.
  •  
3.
  • Brennan, S. J., et al. (författare)
  • Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 513:4, s. 5666-5685
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a ∼ 22–25 M⊙ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of ∼22 M⊙. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity ∼650 km s−1, while the second, more energetic event ejected material at ∼4500 km s−1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 M⊙. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu.
  •  
4.
  • Allentoft, Morten E., et al. (författare)
  • 100 ancient genomes show repeated population turnovers in Neolithic Denmark
  • 2024
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 625, s. 329-337
  • Tidskriftsartikel (refereegranskat)abstract
    • Major migration events in Holocene Eurasia have been characterized genetically at broad regional scales1–4. However, insights into the population dynamics in the contact zones are hampered by a lack of ancient genomic data sampled at high spatiotemporal resolution5–7. Here, to address this, we analysed shotgun-sequenced genomes from 100 skeletons spanning 7,300 years of the Mesolithic period, Neolithic period and Early Bronze Age in Denmark and integrated these with proxies for diet (13C and 15N content), mobility (87Sr/86Sr ratio) and vegetation cover (pollen). We observe that Danish Mesolithic individuals of the Maglemose, Kongemose and Ertebølle cultures form a distinct genetic cluster related to other Western European hunter-gatherers. Despite shifts in material culture they displayed genetic homogeneity from around 10,500 to 5,900 calibrated years before present, when Neolithic farmers with Anatolian-derived ancestry arrived. Although the Neolithic transition was delayed by more than a millennium relative to Central Europe, it was very abrupt and resulted in a population turnover with limited genetic contribution from local hunter-gatherers. The succeeding Neolithic population, associated with the Funnel Beaker culture, persisted for only about 1,000 years before immigrants with eastern Steppe-derived ancestry arrived. This second and equally rapid population replacement gave rise to the Single Grave culture with an ancestry profile more similar to present-day Danes. In our multiproxy dataset, these major demographic events are manifested as parallel shifts in genotype, phenotype, diet and land use.
  •  
5.
  • Kjær, Kurt H., et al. (författare)
  • A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA
  • 2022
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 612:7939, s. 283-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Late Pliocene and Early Pleistocene epochs 3.6 to 0.8 million years ago1 had climates resembling those forecasted under future warming2. Palaeoclimatic records show strong polar amplification with mean annual temperatures of 11–19 °C above contemporary values3,4. The biological communities inhabiting the Arctic during this time remain poorly known because fossils are rare5. Here we report an ancient environmental DNA6 (eDNA) record describing the rich plant and animal assemblages of the Kap København Formation in North Greenland, dated to around two million years ago. The record shows an open boreal forest ecosystem with mixed vegetation of poplar, birch and thuja trees, as well as a variety of Arctic and boreal shrubs and herbs, many of which had not previously been detected at the site from macrofossil and pollen records. The DNA record confirms the presence of hare and mitochondrial DNA from animals including mastodons, reindeer, rodents and geese, all ancestral to their present-day and late Pleistocene relatives. The presence of marine species including horseshoe crab and green algae support a warmer climate than today. The reconstructed ecosystem has no modern analogue. The survival of such ancient eDNA probably relates to its binding to mineral surfaces. Our findings open new areas of genetic research, demonstrating that it is possible to track the ecology and evolution of biological communities from two million years ago using ancient eDNA.
  •  
6.
  • Sapkota, D., et al. (författare)
  • COVID-19 salivary signature: diagnostic and research opportunities
  • 2021
  • Ingår i: Journal of Clinical Pathology. - : BMJ. - 0021-9746 .- 1472-4146. ; 74:6, s. 344-349
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 (caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) epidemic started in Wuhan (Hubei Province, China) in mid-December 2019 and quickly spread across the world as a pandemic. As a key to tracing the disease and to implement strategies aimed at breaking the chain of disease transmission, extensive testing for SARS-CoV-2 was suggested. Although nasopharyngeal/oropharyngeal swabs are the most commonly used biological samples for SARS-CoV-2 diagnosis, they have a number of limitations related to sample collection and healthcare personnel safety. In this context, saliva is emerging as a promising alternative to nasopharyngeal/oropharyngeal swabs for COVID-19 diagnosis and monitoring. Saliva collection, being a non-invasive approach with possibility for self-collection, circumvents to a great extent the limitations associated with the use of nasopharyngeal/oropharyngeal swabs. In addition, various salivary biomarkers including the salivary metabolomics offer a high promise to be useful for better understanding of COVID-19 and possibly in the identification of patients with various degrees of severity, including asymptomatic carriers. This review summarises the clinical and scientific basis for the potential use of saliva for COVID-19 diagnosis and disease monitoring. Additionally, we discuss saliva-based biomarkers and their potential clinical and research applications related to COVID-19.
  •  
7.
  • Tartaglia, Leonardo, et al. (författare)
  • The Early Discovery of SN 2017ahn : Signatures of Persistent Interaction in a Fast-declining Type II Supernova
  • 2021
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 907:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present high-cadence, comprehensive data on the nearby (D  33 Mpc) Type II supernova (SN II) 2017ahn, discovered within about one day of the explosion, from the very early phases after explosion to the nebular phase. The observables of SN 2017ahn show a significant evolution over the 470 days of our follow-up campaign, first showing prominent, narrow Balmer lines and other high-ionization features purely in emission (i.e., flash spectroscopy features), which progressively fade and lead to a spectroscopic evolution similar to that of more canonical SNe II. Over the same period, the decline of the light curves in all bands is fast, resembling the photometric evolution of linearly declining H-rich core-collapse SNe. The modeling of the light curves and early flash spectra suggests that a complex circumstellar medium surrounds the progenitor star at the time of explosion, with a first dense shell produced during the very late stages of its evolution that is swept up by the rapidly expanding ejecta within the first ~6 days of the SN evolution, while signatures of interaction are observed also at later phases. Hydrodynamical models support the scenario in which linearly declining SNe II are predicted to arise from massive yellow super- or hypergiants depleted of most of their hydrogen layers.
  •  
8.
  • von Salzen, Knut, et al. (författare)
  • Clean air policies are key for successfully mitigating Arctic warming
  • 2022
  • Ingår i: Communications Earth & Environment. - : Springer Science and Business Media LLC. - 2662-4435. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • A tighter integration of modeling frameworks for climate and air quality is urgently needed to assess the impacts of clean air policies on future Arctic and global climate. We combined a new model emulator and comprehensive emissions scenarios for air pollutants and greenhouse gases to assess climate and human health co-benefits of emissions reductions. Fossil fuel use is projected to rapidly decline in an increasingly sustainable world, resulting in far-reaching air quality benefits. Despite human health benefits, reductions in sulfur emissions in a more sustainable world could enhance Arctic warming by 0.8 °C in 2050 relative to the 1995–2014, thereby offsetting climate benefits of greenhouse gas reductions. Targeted and technically feasible emissions reduction opportunities exist for achieving simultaneous climate and human health co-benefits. It would be particularly beneficial to unlock a newly identified mitigation potential for carbon particulate matter, yielding Arctic climate benefits equivalent to those from carbon dioxide reductions by 2050.
  •  
9.
  • Wang, Yucheng, et al. (författare)
  • Late Quaternary Dynamics of Arctic Biota from Ancient Environmental Genomics
  • 2021
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 600:7887, s. 86-92
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last glacial–interglacial cycle, Arctic biotas experienced substantial climatic changes, yet the nature, extent and rate of their responses are not fully understood1–8. Here we report a large-scale environmental DNA metagenomic study of ancient plant and mammal communities, analysing 535 permafrost and lake sediment samples from across the Arctic spanning the past 50,000 years. Furthermore, we present 1,541 contemporary plant genome assemblies that were generated as reference sequences. Our study provides several insights into the long-term dynamics of the Arctic biota at the circumpolar and regional scales. Our key fndings include: (1) a relatively homogeneous steppe–tundra fora dominated the Arctic during the Last Glacial Maximum, followed by regional divergence of vegetation during the Holocene epoch; (2) certain grazing animals consistently co-occurred in space and time; (3) humans appear to have been a minor factor in driving animal distributions; (4) higher efective precipitation, as well as an increase in the proportion of wetland plants, show negative efects on animal diversity; (5) the persistence of the steppe–tundra vegetation in northern Siberia enabled the late survival of several now-extinct megafauna species, including the woolly mammoth until 3.9 ± 0.2 thousand years ago (ka) and the woolly rhinoceros until 9.8 ± 0.2 ka; and (6) phylogenetic analysis of mammoth environmental DNA reveals a previously unsampled mitochondrial lineage. Our fndings highlight the power of ancient environmental metagenomics analyses to advance understanding of population histories and long-term ecological dynamics
  •  
10.
  • Wang, Yucheng, et al. (författare)
  • Reply to: When did mammoths go extinct?
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 612:7938, s. 4-6
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy