SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandqvist Aage) srt2:(2005-2009)"

Sökning: WFRF:(Sandqvist Aage) > (2005-2009)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Biver, N., et al. (författare)
  • Radio observations of Comet 9P/Tempel 1 before and after Deep Impact
  • 2007
  • Ingår i: Icarus. - : Elsevier BV. - 1090-2643 .- 0019-1035. ; 191:2, s. 494-512
  • Tidskriftsartikel (refereegranskat)abstract
    • Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s -1 . Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H 2 O with Odin from June to August 2005. The peak of outgassing was found to be around 1 × 10 28   molec. s -1 between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH 3 OH and H 2 S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73 ± 0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the "natural" outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH 3 OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H 2 O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈ 5000 ± 2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas. © 2006 Elsevier Inc. All rights reserved.
  •  
2.
  • Biver, N., et al. (författare)
  • Radio observations of Comet 9P/Tempel 1 before and after Deep Impact
  • 2007
  • Ingår i: Icarus. - : Elsevier BV. - 1090-2643 .- 0019-1035. ; 187:1, s. 253-271
  • Tidskriftsartikel (refereegranskat)abstract
    • Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s -1 . Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H 2 O with Odin from June to August 2005. The peak of outgassing was found to be around 1 × 10 28   molec. s -1 between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH 3 OH and H 2 S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73 ± 0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the "natural" outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH 3 OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H 2 O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈ 5000 ± 2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas. © 2006 Elsevier Inc. All rights reserved.
  •  
3.
  • Bjerkeli, Per, 1977, et al. (författare)
  • Odin observations of water in molecular outflows and shocks
  • 2009
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 507:3, s. 1455-1466
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims: We investigate the ortho-water abundance in outflows and shocks in order to improve our knowledge of shock chemistry and of the physics behind molecular outflows.Methods: We used the Odin space observatory to observe the H2O(110-101) line. We obtain strip maps and single pointings of 13 outflows and two supernova remnants where we report detections for eight sources. We used RADEX to compute the beam averaged abundances of o-H2O relative to H2. In the case of non-detection, we derive upper limits on the abundance.Results: Observations of CO emission from the literature show that the volume density of H2 can vary to a large extent, a parameter that puts severe uncertainties on the derived abundances. Our analysis shows a wide range of abundances reflecting the degree to which shock chemistry affects the formation and destruction of water. We also compare our results with recent results from the SWAS team.Conclusions: Elevated abundances of ortho-water are found in several sources. The abundance reaches values as high as what would be expected from a theoretical C-type shock where all oxygen, not in the form of CO, is converted to water. However, the high abundances we derive could also be due to the low densities (derived from CO observations) that we assume. The water emission may in reality stem from high density regions much smaller than the Odin beam. We do not find any relationship between the abundance and the mass loss rate. On the other hand, there is a relation between the derived water abundance and the observed maximum outflow velocity.Odin is a Swedish-led satellite project funded jointly by the Swedish National Space Board (SNSB), the Canadian Space Agency (CSA), the National Technology Agency of Finland (Tekes) and Centre National d'Étude Spatiale (CNES).The Swedish ESO Submillimetre Telescope (SEST) located at La Silla, Chile was funded by the Swedish Research Council (VR) and the European Southern Observatory. It was decommissioned in 2003. Appendix B is only available in electronic form at http://www.aanda.org
  •  
4.
  •  
5.
  • Olofsson, Henrik, 1972, et al. (författare)
  • A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite. I. The observational data
  • 2007
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 476:number 2, December III, s. 791-806
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims.Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. The subsequent multi-transition analysis will provide improved knowledge of molecular abundances, cloud temperatures and densities, and may also reveal previously unsuspected blends of molecular lines, which otherwise may lead to erroneous conclusions. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H2O and O2 in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm - regions largely unobservable from the ground.Methods.Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486-492 and 541-576 GHz with rather uniform sensitivity (22-25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 h each). An on-source integration time of 20 h was achieved for most bands. The entire campaign consumed ~1100 orbits, each containing one hour of serviceable astro-observation.Results.We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 11,0-10,1 transitions of ortho-H2O, H218O and H217O, the high energy 62,4-71,7 line of para-H2O (Eu=867$\,$K) and the HDO(20,2-11,1) line have been observed, as well as the 10-01 lines from NH3 and its rare isotopologue 15NH3. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the line wings of the H218O, H217O and 13CO lines changing the true linewidths of the outflow emission.
  •  
6.
  • Persson, Carina, 1964, et al. (författare)
  • A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite. II. Data analysis
  • 2007
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 476:2, December III, s. 807-827
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims.We investigate the physical and chemical conditions in a typical star forming region, including an unbiased search for new molecules in a spectral region previously unobserved.Methods.Due to its proximity, the Orion KL region offers a unique laboratory of molecular astrophysics in a chemically rich, massive star forming region. Several ground-based spectral line surveys have been made, but due to the absorption by water and oxygen, the terrestrial atmosphere is completely opaque at frequencies around 487 and 557 GHz. To cover these frequencies we used the Odin satellite to perform a spectral line survey in the frequency ranges 486-492 GHz and 541-577 GHz, filling the gaps between previous spectral scans. Odin's high main beam efficiency, $\eta_{{\rm mb}}$ = 0.9, and observations performed outside the atmosphere make our intensity scale very well determined.Results.We observed 280 spectral lines from 38 molecules including isotopologues, and, in addition, 64 unidentified lines. A few U-lines have interesting frequency coincidences such as ND and the anion SH-. The beam-averaged emission is dominated by CO, H2O, SO2, SO, 13CO and CH3OH. Species with the largest number of lines are CH3OH, (CH3)2O, SO2, 13CH3OH, CH3CN and NO. Six water lines are detected including the ground state rotational transition 11,0-10,1 of o-H2O, its isotopologues o-H218O and o-H217O, the Hot Core tracing p-H2O transition 62,4-71,7, and the 20, 2-11,1 transition of HDO. Other lines of special interest are the 10-0$_$ transition of NH3 and its isotopologue 15NH3. Isotopologue abundance ratios of D/H, 12C/13C, 32S/34S, 34S/33S, and 18O/17O are estimated. The temperatures, column densities and abundances in the various subregions are estimated, and we find very high gas-phase abundances of H2O, NH3, SO2, SO, NO, and CH3OH. A comparison with the ice inventory of ISO sheds new light on the origin of the abundant gas-phase molecules.
  •  
7.
  •  
8.
  • Biver, Nicolas, et al. (författare)
  • Submillimetre observations of comets with Odin: 2001 2005
  • 2007
  • Ingår i: Planetary and Space Science. - : Elsevier BV. - 0032-0633. ; 55:9, s. 1058-1068
  • Tidskriftsartikel (refereegranskat)abstract
    • The Odin satellite, launched in February 2001, is equipped with a 1.1-m submillimetre telescope. Odin was used to observe the 557 GHz line of water with high spectral resolution in 12 comets between 2001 and 2005. Line shapes and spatial mapping provide information on the anisotropy of the outgassing and constraints on water excitation, enabling accurate measurements of the water production rate. Five comets were regularly observed over periods of more than one month to monitor the variation of their water outgassing rate with heliocentric distance. Observing campaigns have been generally coordinated with ground-based observations of molecular lines at Nançay, CSO or IRAM 30-m telescopes to obtain molecular abundances relative to water. Thanks to Odin's frequency coverage, it was also possible to detect the H218O 548 GHz line, first in comet 153P/Ikeya Zhang in April 2002 [Lecacheux, A., Biver, N., Crovisier, J. et al., 2003, Observations of water in comets with Odin. Astron. Astrophys. 402, L55 L58.] and then in comets C/2002 T7 (LINEAR), C/2001 Q4 (NEAT) and C/2004 Q2 (Machholz). The 16O/18O isotopic ratio (≈450) is consistent with the terrestrial value. Ammonia has been searched for in three comets through its J=1 0 line at 572 GHz and was tentatively detected in C/2001 Q4 and C/2002 T7. The derived abundances of NH3 relative to water are 0.5% and 0.3%, respectively, similar to values obtained in other comets with different techniques.
  •  
9.
  •  
10.
  • Hjalmarson, Åke, et al. (författare)
  • Recent astronomy highlights from the Odin satellite
  • 2005
  • Ingår i: Advances in Space Research. - : Elsevier BV. - 0273-1177 .- 1879-1948. ; 36, s. 1031-1047
  • Tidskriftsartikel (refereegranskat)abstract
    • Astronomy highlights, mainly from the third year of Odin observations time shared 50/50% with aeronomy are presented: the very low O2 abundance limits achieved, the highly pressure broadened absorption lines of H2O, H218O, and CO (5 → 4) in the atmosphere of Mars, the high precision H2O and H218O observations of comets, the detections of NH3 and H2O around the C-rich star IRC+10216 (CW Leo) and of H2O around the O-rich star W Hya, NH3 and H2O observations of infall/outflow interactions, observations of H2O, H218O, H217O as well as NH3 and 15NH3 in multiple absorptions towards Sgr B2, and in emission towards Orion KL, the H2O detection of several new outflows in the DR21 W75S region. We also discuss the results of deconvolution of high S/N H2O, CO and 13CO (5 → 4) maps of the Orion KL region to 40″ resolution (the beam size of the Herschel telescope) and the first results from our ongoing “spectral scan” of Orion KL in bands around 555 and 570 GHz. Finally, a search for primordial molecules is presented.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy