SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sandström P.) srt2:(2015-2019)"

Sökning: WFRF:(Sandström P.) > (2015-2019)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Östling, Jörgen, et al. (författare)
  • IL-17-high asthma with features of a psoriasis immunophenotype
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier. - 0091-6749 .- 1097-6825. ; 144:5, s. 1198-1213
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The role of IL-17 immunity is well established in patients with inflammatory diseases, such as psoriasis and inflammatory bowel disease, but not in asthmatic patients, in whom further study is required.Objective: We sought to undertake a deep phenotyping study of asthmatic patients with upregulated IL-17 immunity.Methods: Whole-genome transcriptomic analysis was performed by using epithelial brushings, bronchial biopsy specimens (91 asthmatic patients and 46 healthy control subjects), and whole blood samples (n = 498) from the Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes (U-BIOPRED) cohort. Gene signatures induced in vitro by IL-17 and IL-13 in bronchial epithelial cells were used to identify patients with IL-17–high and IL-13–high asthma phenotypes.Results: Twenty-two of 91 patients were identified with IL-17, and 9 patients were identified with IL-13 gene signatures. The patients with IL-17–high asthma were characterized by risk of frequent exacerbations, airway (sputum and mucosal) neutrophilia, decreased lung microbiota diversity, and urinary biomarker evidence of activation of the thromboxane B2 pathway. In pathway analysis the differentially expressed genes in patients with IL-17-high asthma were shared with those reported as altered in psoriasis lesions and included genes regulating epithelial barrier function and defense mechanisms, such as IL1B, IL6, IL8, and β-defensin.Conclusion: The IL-17–high asthma phenotype, characterized by bronchial epithelial dysfunction and upregulated antimicrobial and inflammatory response, resembles the immunophenotype of psoriasis, including activation of the thromboxane B2 pathway, which should be considered a biomarker for this phenotype in further studies, including clinical trials targeting IL-17.
  •  
4.
  •  
5.
  • Tariq, K., et al. (författare)
  • Sputum proteomic signature of gastro-oesophageal reflux in patients with severe asthma
  • 2019
  • Ingår i: Respiratory Medicine. - : Saunders Elsevier. - 0954-6111 .- 1532-3064. ; 150, s. 66-73
  • Tidskriftsartikel (refereegranskat)abstract
    • Gastro-oesophageal reflux disease (GORD) has long been associated with poor asthma control without an established cause-effect relationship. 610 asthmatics (421 severe/88 mild-moderate) and 101 healthy controls were assessed clinically and a subset of 154 severe asthmatics underwent proteomic analysis of induced sputum using untargeted mass spectrometry, LC-IMS-MSE. Univariate and multiple logistic regression analyses (MLR) were conducted to identify proteins associated with GORD in this cohort. When compared to mild/moderate asthmatics and healthy individuals, respectively, GORD was three-and ten-fold more prevalent in severe asthmatics and was associated with increased asthma symptoms and oral corticosteroid use, poorer quality of life, depression/anxiety, obesity and symptoms of sino-nasal disease. Comparison of sputum proteomes in severe asthmatics with and without active GORD showed five differentially abundant proteins with described roles in antimicrobial defences, systemic inflammation and epithelial integrity. Three of these were associated with active GORD by multiple linear regression analysis: Ig lambda variable 1-47 (p = 0.017) and plasma protease C1 inhibitor (p = 0.043), both in lower concentrations, and lipocalin-1 (p = 0.034) in higher concentrations in active GORD. This study provides evidence which suggests that reflux can cause subtle perturbation of proteins detectable in the airways lining fluid and that severe asthmatics with GORD may represent a distinct phenotype of asthma.
  •  
6.
  • Jevnikar, Z., et al. (författare)
  • Epithelial IL-6 trans-signaling defines a new asthma phenotype with increased airway inflammation
  • 2019
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 143:2, s. 577-590
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Although several studies link high levels of IL-6 and soluble IL-6 receptor (sIL-6R) to asthma severity and decreased lung function, the role of IL-6 trans-signaling (IL-6TS) in asthmatic patients is unclear. Objective: We sought to explore the association between epithelial IL-6TS pathway activation and molecular and clinical phenotypes in asthmatic patients. Methods: An IL-6TS gene signature obtained from air-liquid interface cultures of human bronchial epithelial cells stimulated with IL-6 and sIL-6R was used to stratify lung epithelial transcriptomic data (Unbiased Biomarkers in Prediction of Respiratory Disease Outcomes [U-BIOPRED] cohorts) by means of hierarchical clustering. IL-6TS-specific protein markers were used to stratify sputum biomarker data (Wessex cohort). Molecular phenotyping was based on transcriptional profiling of epithelial brushings, pathway analysis, and immunohistochemical analysis of bronchial biopsy specimens. Results: Activation of IL-6TS in air-liquid interface cultures reduced epithelial integrity and induced a specific gene signature enriched in genes associated with airway remodeling. The IL-6TS signature identified a subset of patients with IL-6TS-high asthma with increased epithelial expression of IL-6TS-inducible genes in the absence of systemic inflammation. The IL-6TS-high subset had an overrepresentation of frequent exacerbators, blood eosinophilia, and submucosal infiltration of T cells and macrophages. In bronchial brushings Toll-like receptor pathway genes were upregulated, whereas expression of cell junction genes was reduced. Sputum sIL-6R and IL-6 levels correlated with sputum markers of remodeling and innate immune activation, in particular YKL-40, matrix metalloproteinase 3, macrophage inflammatory protein 1 beta, IL-8, and IL-1 beta. Conclusions: Local lung epithelial IL-6TS activation in the absence of type 2 airway inflammation defines a novel subset of asthmatic patients and might drive airway inflammation and epithelial dysfunction in these patients.
  •  
7.
  • Shaw, DE, et al. (författare)
  • Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort
  • 2015
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 46:5, s. 1308-1321
  • Tidskriftsartikel (refereegranskat)abstract
    • U-BIOPRED is a European Union consortium of 20 academic institutions, 11 pharmaceutical companies and six patient organisations with the objective of improving the understanding of asthma disease mechanisms using a systems biology approach.This cross-sectional assessment of adults with severe asthma, mild/moderate asthma and healthy controls from 11 European countries consisted of analyses of patient-reported outcomes, lung function, blood and airway inflammatory measurements.Patients with severe asthma (nonsmokers, n=311; smokers/ex-smokers, n=110) had more symptoms and exacerbations compared to patients with mild/moderate disease (n=88) (2.5 exacerbations versus 0.4 in the preceding 12 months; p<0.001), with worse quality of life, and higher levels of anxiety and depression. They also had a higher incidence of nasal polyps and gastro-oesophageal reflux with lower lung function. Sputum eosinophil count was higher in severe asthma compared to mild/moderate asthma (median count 2.99% versus 1.05%; p=0.004) despite treatment with higher doses of inhaled and/or oral corticosteroids.Consistent with other severe asthma cohorts, U-BIOPRED is characterised by poor symptom control, increased comorbidity and airway inflammation, despite high levels of treatment. It is well suited to identify asthma phenotypes using the array of “omic” datasets that are at the core of this systems medicine approach.
  •  
8.
  • Takahashi, K, et al. (författare)
  • Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis
  • 2018
  • Ingår i: The European respiratory journal. - : European Respiratory Society (ERS). - 1399-3003 .- 0903-1936. ; 51:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Severe asthma patients with a significant smoking history have airflow obstruction with reported neutrophilia. We hypothesise that multi-omic analysis will enable the definition of smoking and ex-smoking severe asthma molecular phenotypes.The U-BIOPRED cohort of severe asthma patients, containing current-smokers (CSA), ex-smokers (ESA), nonsmokers and healthy nonsmokers was examined. Blood and sputum cell counts, fractional exhaled nitric oxide and spirometry were obtained. Exploratory proteomic analysis of sputum supernatants and transcriptomic analysis of bronchial brushings, biopsies and sputum cells was performed.Colony-stimulating factor (CSF)2 protein levels were increased in CSA sputum supernatants, with azurocidin 1, neutrophil elastase and CXCL8 upregulated in ESA. Phagocytosis and innate immune pathways were associated with neutrophilic inflammation in ESA. Gene set variation analysis of bronchial epithelial cell transcriptome from CSA showed enrichment of xenobiotic metabolism, oxidative stress and endoplasmic reticulum stress compared to other groups. CXCL5 and matrix metallopeptidase 12 genes were upregulated in ESA and the epithelial protective genes, mucin 2 and cystatin SN, were downregulated.Despite little difference in clinical characteristics, CSA were distinguishable from ESA subjects at the sputum proteomic level, with CSA patients having increased CSF2 expression and ESA patients showing sustained loss of epithelial barrier processes.
  •  
9.
  • Sandström, A, et al. (författare)
  • Altered cerebral pain processing of noxious stimuli from inflamed joints in rheumatoid arthritis : An event-related fMRI study.
  • 2019
  • Ingår i: Brain, behavior, and immunity. - : Elsevier BV. - 0889-1591 .- 1090-2139. ; 81, s. 272-279
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE: To our knowledge, this is the first study assessing brain activation in response to painful stimulation over disease-relevant (finger joint) vs. neutral area (thumb nail) in patients suffering from rheumatoid arthritis (RA) compared to healthy controls (HC).METHOD: Thirty-one RA patients and 23 HC underwent functional magnetic resonance imaging (fMRI) while stimulated with subjectively calibrated painful pressures corresponding to a pain sensation of 50 mm on a 100 mm VAS scale (P50) at disease-affected finger joint and thumbnail (left hand), and corresponding sites in HC.RESULTS: Compared to controls, RA patients had significantly increased pain sensitivity (lower P50) at the inflamed joints but not at the thumbnail. RA patients exhibited significantly less activation in regions related to pain- and somatosensory processing (S1, M1, anterior insula, S2, SMG and MCC) during painful joint stimulation, compared to HC. No group difference in cerebral pain processing was found for the non-affected thumbnail. Within RA patients, significantly less brain activation was found in response to painful stimulation over disease-affected joint compared to non-affected thumbnail in bilateral S1, bilateral S2, and anterior insula. Further, RA patients exhibited a right-sided dlPFC deactivation, psycho-physiologically interacting (PPI) with the left dlPFC in response to painful stimulation at disease-affected joints.CONCLUSION: The results indicate normal pain sensitivity and cerebral pain processing in RA for non-affected sites, while the increased sensitivity at inflamed joints indicate peripheral/spinal sensitization. Brain imaging data suggest that disease-relevant pain processing in RA is marked by aberrations and a failed initiation of cortical top-down regulation.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy