SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sanz Maria Jose) srt2:(2020-2023)"

Sökning: WFRF:(Sanz Maria Jose) > (2020-2023)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bojorges, Hylenne, et al. (författare)
  • Structural and functional properties of alginate obtained by means of high hydrostatic pressure-assisted extraction
  • 2023
  • Ingår i: Carbohydrate Polymers. - : Elsevier BV. - 0144-8617 .- 1879-1344. ; 299
  • Tidskriftsartikel (refereegranskat)abstract
    • The effects of the high hydrostatic pressure (HPP) pre-treatment on the alginate extraction were seen to greatly depend on the recalcitrant nature of two algae species. Alginates were deeply characterized in terms of composition, structure (HPAEC-PAD, FTIR, NMR, SEC-MALS), functional and technological properties.The pre-treatment significantly increased the alginate yield in the less recalcitrant A. nodosum (AHP) also favoring the extraction of sulphated fucoidan/fucan structures and polyphenols. Although the molecular weight was significantly lower in AHP samples, neither the M/G ratio nor the M and G sequences were modified. In contrast, a lower increase in alginate extraction yield was observed for the more recalcitrant S. latissima after the HPP pre-treatment (SHP), but it significantly affected the M/G values of the resulting extract. The gelling properties of the alginate extracts were also explored by external gelation in CaCl2 solutions. The mechanical strength and nanostructure of the hydrogel beads prepared were determined using compression tests, synchro-tron small angle X-ray scattering (SAXS), and cryo-scanning electron microscopy (Cryo-SEM). Interestingly, the application of HPP significantly improved the gel strength of SHP, in agreement with the lower M/G values and the stiffer rod-like conformation obtained for these samples.
  •  
2.
  • Knödlseder, Nastassia, et al. (författare)
  • Engineering selectivity of Cutibacterium acnes phages by epigenetic imprinting
  • 2022
  • Ingår i: PLoS Pathogens. - : Public Library of Science (PLoS). - 1553-7366 .- 1553-7374. ; 18:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Cutibacterium acnes (C. acnes) is a gram-positive bacterium and a member of the human skin microbiome. Despite being the most abundant skin commensal, certain members have been associated with common inflammatory disorders such as acne vulgaris. The availability of the complete genome sequences from various C. acnes clades have enabled the identification of putative methyltransferases, some of them potentially belonging to restrictionmodification (R-M) systems which protect the host of invading DNA. However, little is known on whether these systems are functional in the different C. acnes strains. To investigate the activity of these putative R-M and their relevance in host protective mechanisms, we analyzed the methylome of six representative C. acnes strains by Oxford Nanopore Technologies (ONT) sequencing. We detected the presence of a 6-methyladenine modification at a defined DNA consensus sequence in strain KPA171202 and recombinant expression of this R-M system confirmed its methylation activity. Additionally, a R-M knockout mutant verified the loss of methylation properties of the strain. We studied the potential of one C. acnes bacteriophage (PAD20) in killing various C. acnes strains and linked an increase in its specificity to phage DNA methylation acquired upon infection of a methylation competent strain. We demonstrate a therapeutic application of this mechanism where phages propagated in R-M deficient strains selectively kill R-M deficient acne-prone clades while probiotic ones remain resistant to phage infection.
  •  
3.
  • Norte, Ana Cláudia, et al. (författare)
  • Host dispersal shapes the population structure of a tick-borne bacterial pathogen
  • 2020
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 29:3, s. 485-501
  • Tidskriftsartikel (refereegranskat)abstract
    • Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies “Candidatus Borrelia aligera” was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.
  •  
4.
  • Rodriguez-Espigares, Ismael, et al. (författare)
  • GPCRmd uncovers the dynamics of the 3D-GPCRome
  • 2020
  • Ingår i: Nature Methods. - : Springer Nature. - 1548-7091 .- 1548-7105. ; 17:8, s. 777-787
  • Tidskriftsartikel (refereegranskat)abstract
    • G-protein-coupled receptors (GPCRs) are involved in numerous physiological processes and are the most frequent targets of approved drugs. The explosion in the number of new three-dimensional (3D) molecular structures of GPCRs (3D-GPCRome) over the last decade has greatly advanced the mechanistic understanding and drug design opportunities for this protein family. Molecular dynamics (MD) simulations have become a widely established technique for exploring the conformational landscape of proteins at an atomic level. However, the analysis and visualization of MD simulations require efficient storage resources and specialized software. Here we present GPCRmd (http://gpcrmd.org/), an online platform that incorporates web-based visualization capabilities as well as a comprehensive and user-friendly analysis toolbox that allows scientists from different disciplines to visualize, analyze and share GPCR MD data. GPCRmd originates from a community-driven effort to create an open, interactive and standardized database of GPCR MD simulations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy