SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Satriano C) srt2:(2015-2019)"

Sökning: WFRF:(Satriano C) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Giacomelli, C., et al. (författare)
  • Copper (II) ions modulate Angiogenin activity in human endothelial cells
  • 2015
  • Ingår i: International Journal of Biochemistry & Cell Biology. - : Elsevier BV. - 1357-2725. ; 60, s. 185-196
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenin (ANG), a member of the secreted ribonuclease family, is a potent angiogenesis stimulator that interacts with endothelial cells inducing a wide range of responses. Metal ions dyshomeostasis play a fundamental role in the onset of neurodegenerative diseases, in particular copper that is also involved in angiogenesis processes. It is known that vascular pathologies are present in neurodegenerative diseases and Angiogenin is down-regulated in Alzheimer and Parkinson diseases, as well as it has been found as one of the mutated genes in amyotrophic lateral sclerosis (ALS). Copper (II) induces an increase of Angiogenin binding to endothelial cells but, so far, the relationship between copper-ANG and angiogenesis induction remain unclear. Herein, the effects of copper (II) ions on Angiogenin activity and expression were evaluated. The binding of copper was demonstrated to affect the intracellular localization of the protein decreasing its nuclear translocation. Moreover, the ANG-copper (II) system negatively affects the protein-induced angiogenesis, as well as endothelial cells migration. Surprisingly, copper also reveals the ability to modulate the Angiogenin transcription. These results highlight the tight relationship between copper and Angiogenin, pointing out the biological relevance of ANG-copper system in the regulation of endothelial cell function, and revealing a possible new mechanism at the basis of vascular pathologies.
  •  
3.
  • Satriano, C., et al. (författare)
  • Ferritin-supported lipid bilayers for triggering the endothelial cell response
  • 2017
  • Ingår i: Colloids and Surfaces B: Biointerfaces. - : Elsevier BV. - 0927-7765 .- 1873-4367. ; 149, s. 48-55
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybrid nanoassemblies of ferritin and silica-supported lipid bilayers (ferritin-SLBs) have been prepared and tested for the adhesion, spreading and proliferation of retinal microvascular endothelial cells (ECs). Lipid membranes with varying surface charge were obtained by mixing cationic 1-palmitoyl-2-oleoyl-sn-glycero-3-ethylphosphocholine (POEPC) with zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) at increasing POPC/POEPC ratios. The supported bilayer formation and their subsequent interaction processes with ferritin were studied at the pH of 7.4 at different protein concentrations, by using the quartz crystal microbalance with dissipation monitoring and by atomic force microscopy. Both kinetics and viscoelastic parameters of the protein-lipid membrane interface were scrutinized, as well as surface coverage. Phase-contrast optical microscopy analyses of the ferritin-SLBs substrates after their interaction with endothelial cells evidenced the highest cell adhesion (2-4 h of incubation time) and proliferation (from 24 h to 5 days) for the membranes of POPC/POEPC (75:25 ratio). Moreover, ferritin increased both cell adhesion and proliferation in comparison to control glass (respectively 1.5- and 1.75-fold) as well as proliferation in comparison to bare POPC/POEPC (95:5 ratio) (2 fold). Results are very promising in the goal of modulating the endothelial cell response through the interplay of viscoelastic/charge properties of the solid-supported membranes and the SLB-conditioned ferritin activity.
  •  
4.
  • Magrì, A., et al. (författare)
  • Coordination environment of Cu(II) ions bound to N-terminal peptide fragments of angiogenin protein
  • 2016
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1422-0067. ; 17:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiogenin (Ang) is a potent angiogenic factor, strongly overexpressed in patients affected by different types of cancers. The specific Ang cellular receptors have not been identified, but it is known that Ang–actin interaction induces changes both in the cell cytoskeleton and in the extracellular matrix. Most in vitro studies use the recombinant form (r-Ang) instead of the form that is normally present in vivo (“wild-type”, wt-Ang). The first residue of r-Ang is a methionine, with a free amino group, whereas wt-Ang has a glutamic acid, whose amino group spontaneously cyclizes in the pyro-glutamate form. The Ang biological activity is influenced by copper ions. To elucidate the role of such a free amino group on the protein–copper binding, we scrutinized the copper(II) complexes with the peptide fragments Ang(1–17) and AcAng(1–17), which encompass the sequence 1–17 of angiogenin (QDNSRYTHFLTQHYDAK-NH2), with free amino and acetylated N-terminus, respectively. Potentiometric, ultraviolet-visible (UV-vis), nuclear magnetic resonance (NMR) and circular dichroism (CD) studies demonstrate that the two peptides show a different metal coordination environment. Confocal microscopy imaging of neuroblastoma cells with the actin staining supports the spectroscopic results, with the finding of different responses in the cytoskeleton organization upon the interaction, in the presence or not of copper ions, with the free amino and the acetylated N-terminus peptides. © 2016 by the authors; licensee MDPI, Basel, Switzerland.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy