SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schütte André) srt2:(2011-2014)"

Sökning: WFRF:(Schütte André) > (2011-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Arampatzidou, Maria, et al. (författare)
  • Effects of cathepsin K deficiency on intercellular junction proteins, luminal mucus layers, and extracellular matrix constituents in the mouse colon.
  • 2012
  • Ingår i: Biological chemistry. - : Walter de Gruyter GmbH. - 1437-4315. ; 393:12, s. 1391-403
  • Tidskriftsartikel (refereegranskat)abstract
    • Cathepsin K has been shown to exhibit antimicrobial and anti-inflammatory activities in the mouse colon. To further elucidate its role, we used Ctsk-/- mice and demonstrated that the absence of cathepsin K was accompanied by elevated protein levels of related cysteine cathepsins (cathepsins B, L, and X) in the colon. In principle, such changes could result in altered subcellular localization; however, the trafficking of cysteine cathepsins was not affected in the colon of Ctsk-/- mice. However, cathepsin K deficiency affected the extracellular matrix constituents, as higher amounts of collagen IV and laminin were observed. Moreover, the localization pattern of the intercellular junction proteins E-cadherin and occludin was altered in the colon of Ctsk-/- mice, suggesting potential impairment of the barrier function. Thus, we used an ex vivo method for assessing the mucus layers and showed that the absence of cathepsin K had no influence on mucus organization and growth. The data of this study support the notion that cathepsin K contributes to intestinal homeostasis and tissue architecture, but the lack of cathepsin K activity is not expected to affect the mucus-depending barrier functions of the mouse colon. These results are important with regard to oral administration of cathepsin K inhibitors that are currently under investigation in clinical trials.
  •  
2.
  •  
3.
  • Ermund, Anna, et al. (författare)
  • Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches.
  • 2013
  • Ingår i: American journal of physiology. Gastrointestinal and liver physiology. - : American Physiological Society. - 1522-1547 .- 0193-1857. ; 305:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Colon has been shown to have a two-layered mucus system where the inner layer is devoid of bacteria. However, a complete overview of the mouse gastrointestinal mucus system is lacking. We now characterize mucus release, thickness, growth over time, adhesive properties, and penetrability to fluorescent beads from stomach to distal colon. Colon displayed spontaneous mucus release and all regions released mucus in response to carbachol and PGE2, except the distal colon and domes of Peyer's patches. Stomach and colon had an inner mucus layer that was adherent to the epithelium. In contrast, the small intestine and Peyer's patches had a single mucus layer that was easily aspirated. The inner mucus layer of the distal colon was not penetrable to beads the size of bacteria and the inner layer of the proximal colon was only partly penetrable. In contrast, the inner mucus layer of stomach was fully penetrable, as was the small intestinal mucus. This suggests a functional organization of the intestinal mucus system, where the small intestine has loose and penetrable mucus that may allow easy penetration of nutrients, in contrast to the stomach, where the mucus provides physical protection, and the colon, where the mucus separates bacteria from the epithelium. This knowledge of the mucus system and its organization improves our understanding of the gastrointestinal tract physiology.
  •  
4.
  • Gustafsson, Jenny K, 1981, et al. (författare)
  • An ex vivo method for studying mucus formation, properties and thickness in human colonic biopsies and mouse small and large intestinal explants.
  • 2012
  • Ingår i: American journal of physiology. Gastrointestinal and liver physiology. - : American Physiological Society. - 1522-1547 .- 0193-1857. ; 302:4, s. 430-438
  • Tidskriftsartikel (refereegranskat)abstract
    • The colon mucus layers minimize the contact between the luminal flora and the epithelial cells and defects in this barrier may lead to colonic inflammation. We now describe an ex vivo method for analysis of mucus properties in human colon and mouse small and large intestine. Materials and methods: Intestinal explants were mounted in horizontal perfusion chambers. The mucus surface was visualized by adding charcoal particles on the apical side and mucus thickness was measured using a micropipette. Mucus thickness, adhesion and growth rate was recorded for 1 h. In mouse and human colon, the ability of the mucus to act as a barrier to beads the size of bacteria was also evaluated. Tissue viability was monitored by transepithelial potential difference. Results: In mouse ileum the mucus could be removed by gentle aspiration, whereas in colon about 40 µm of the mucus remained attached to the epithelial surface. Both mouse and human colon had an inner mucus layer that was not penetrated by the fluorescent beads. Spontaneous mucus growth was observed in human (240 µm/h) and mouse (100 µm/h) colon, but not in mouse ileum. In contrast, stimulation with carbachol induced a higher mucus secretion in ileum than colon (mouse ileum: Δ200 μm, mouse colon: Δ130 µm, human colon: Δ140 μm). In conclusion, while retaining key properties from the mucus system in vivo, this set up also allows for studies of the highly dynamic mucus system under well controlled conditions.
  •  
5.
  • Johansson, Malin E V, 1971, et al. (författare)
  • Composition and functional role of the mucus layers in the intestine.
  • 2011
  • Ingår i: Cellular and Molecular Life Sciences. - : Springer Science and Business Media LLC. - 1420-682X .- 1420-9071. ; 68, s. 3635-3641
  • Forskningsöversikt (refereegranskat)abstract
    • In discussions on intestinal protection, the protective capacity of mucus has not been very much considered. The progress in the last years in understanding the molecular nature of mucins, the main building blocks of mucus, has, however, changed this. The intestinal enterocytes have their apical surfaces covered by transmembrane mucins and the whole intestinal surface is further covered by mucus, built around the gel-forming mucin MUC2. The mucus of the small intestine has only one layer, whereas the large intestine has a two-layered mucus where the inner, attached layer has a protective function for the intestine, as it is impermeable to the luminal bacteria.
  •  
6.
  • Pelaseyed, Thaher, 1979, et al. (författare)
  • The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system
  • 2014
  • Ingår i: Immunological Reviews. - : Wiley. - 0105-2896 .- 1600-065X. ; 260:1, s. 8-20
  • Forskningsöversikt (refereegranskat)abstract
    • The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103+ type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.
  •  
7.
  • Rodríguez-Piñeiro, Ana María, et al. (författare)
  • Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins.
  • 2013
  • Ingår i: American journal of physiology. Gastrointestinal and liver physiology. - : American Physiological Society. - 1522-1547 .- 0193-1857. ; 305:5
  • Tidskriftsartikel (refereegranskat)abstract
    • The mucus that protects the surface of the gastrointestinal tract is rich in specialized O-glycoproteins called mucins, but little is known about other mucus proteins or their variability along the gastrointestinal tract. To ensure that only mucus was analyzed, we combined collection from explant tissues mounted in perfusion chambers, liquid sample preparation, single-shot mass spectrometry, and specific bioinformatics tools, to characterize the proteome of the murine mucus from stomach to distal colon. With our approach, we identified ∼1,300 proteins in the mucus. We found no differences in the protein composition or abundance between sexes, but there were clear differences in mucus along the tract. Noticeably, mucus from duodenum showed similarities to the stomach, probably reflecting the normal distal transport. Qualitatively, there were, however, fewer differences than might had been anticipated, suggesting a relatively stable core proteome (∼80% of the total proteins identified). Quantitatively, we found significant differences (∼40% of the proteins) that could reflect mucus specialization throughout the gastrointestinal tract. Hierarchical clustering pinpointed a number of such proteins that correlated with Muc2 (e.g., Clca1, Zg16, Klk1). This study provides a deeper knowledge of the gastrointestinal mucus proteome that will be important in further understanding this poorly studied mucosal protection system.
  •  
8.
  • Schütte, André, et al. (författare)
  • Microbial-induced meprin β cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus
  • 2014
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 111:34, s. 12396-12401
  • Tidskriftsartikel (refereegranskat)abstract
    • The mucus that covers and protects the epithelium of the intestine is built around its major structural component, the gel-forming MUC2 mucin. The gel-forming mucins have traditionally been assumed to be secreted as nonattached. The colon has a two-layered mucus system where the inner mucus is attached to the epithelium, whereas the small intestine normally has a nonattached mucus. However, the mucus of the small intestine of meprin β-deficient mice was now found to be attached. Meprin β is an endogenous zinc-dependent metalloprotease now shown to cleave the N-terminal region of the MUC2 mucin at two specific sites. When recombinant meprin β was added to the attached mucus of meprin β-deficient mice, the mucus was detached from the epithelium. Similar to meprin β-deficient mice, germ-free mice have attached mucus as they did not shed the membrane-anchored meprin β into the luminal mucus. The ileal mucus of cystic fibrosis (CF) mice with a nonfunctional cystic fibrosis transmembrane conductance regulator (CFTR) channel was recently shown to be attached to the epithelium. Addition of recombinant meprin β to CF mucus did not release the mucus, but further addition of bicarbonate rendered the CF mucus normal, suggesting that MUC2 unfolding exposed the meprin β cleavage sites. Mucus is thus secreted attached to the goblet cells and requires an enzyme, meprin β in the small intestine, to be detached and released into the intestinal lumen. This process regulates mucus properties, can be triggered by bacterial contact, and is nonfunctional in CF due to poor mucin unfolding.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy