SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schaap M. M.) srt2:(2015-2019)"

Sökning: WFRF:(Schaap M. M.) > (2015-2019)

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jackson, N., et al. (författare)
  • LBCS: The LOFAR Long-Baseline Calibrator Survey
  • 2016
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 595, s. Art no A86-
  • Tidskriftsartikel (refereegranskat)abstract
    • We outline the LOFAR Long-Baseline Calibrator Survey (LBCS), whose aim is to identify sources suitable for calibrating the highest-resolution observations made with the International LOFAR Telescope, which include baselines > 1000 km. Suitable sources must contain significant correlated flux density (greater than or similar to 50 - 100 mJy) at frequencies around 110-190 MHz on scales of a few hundred milliarcseconds. At least for the 200-300-km international baselines, we find around 1 suitable calibrator source per square degree over a large part of the northern sky, in agreement with previous work. This should allow a randomly selected target to be successfully phase calibrated on the international baselines in over 50% of cases. Products of the survey include calibrator source lists and fringe-rate and delay maps of wide areas-typically a few degrees-around each source. The density of sources with significant correlated flux declines noticeably with baseline length over the range 200-600 km, with good calibrators on the longest baselines appearing only at the rate of 0.5 per sq. deg. Coherence times decrease from 1-3 min on 200-km baselines to about 1 min on 600-km baselines, suggesting that ionospheric phase variations contain components with scales of a few hundred kilometres. The longest median coherence time, at just over 3 min, is seen on the DE609 baseline, which at 227 km is close to being the shortest. We see median coherence times of between 80 and 110 s on the four longest baselines (580-600 km), and about 2 min for the other baselines. The success of phase transfer from calibrator to target is shown to be influenced by distance, in a manner that suggests a coherence patch at 150-MHz of the order of 1 deg. Although source structures cannot be measured in these observations, we deduce that phase transfer is affected if the calibrator source structure is not known. We give suggestions for calibration strategies and choice of calibrator sources, and describe the access to the online catalogue and data products.
  •  
3.
  •  
4.
  •  
5.
  • Kootte, R. S., et al. (författare)
  • Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition
  • 2017
  • Ingår i: Cell Metabolism. - : Elsevier BV. - 1550-4131. ; 26:4, s. 611-619
  • Tidskriftsartikel (refereegranskat)abstract
    • The intestinal microbiota has been implicated in insulin resistance, although evidence regarding causality in humans is scarce. We therefore studied the effect of lean donor (allogenic) versus own (autologous) fecal microbiota transplantation (FMT) to male recipients with the metabolic syndrome. Whereas we did not observe metabolic changes at 18 weeks after FMT, insulin sensitivity at 6 weeks after allogenic FMT was significantly improved, accompanied by altered microbiota composition. We also observed changes in plasma metabolites such as gamma-aminobutyric acid and show that metabolic response upon allogenic FMT (defined as improved insulin sensitivity 6 weeks after FMT) is dependent on decreased fecal microbial diversity at baseline. In conclusion, the beneficial effects of lean donor FMT on glucose metabolism are associated with changes in intestinal microbiota and plasma metabolites and can be predicted based on baseline fecal microbiota composition.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Fuzzi, S., et al. (författare)
  • Particulate matter, air quality and climate : lessons learned and future needs
  • 2015
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 15:14, s. 8217-8299
  • Tidskriftsartikel (refereegranskat)abstract
    • The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 degrees C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China and the USA. Thus, there is much that could be done to reduce the effects of atmospheric PM on the climate and the health of the environment and the human population. A prioritized list of actions to mitigate the full range of effects of PM is currently undeliverable due to shortcomings in the knowledge of aerosol science; among the shortcomings, the roles of PM in global climate and the relative roles of different PM precursor sources and their response to climate and land use change over the remaining decades of this century are prominent. In any case, the evidence from this paper strongly advocates for an integrated approach to air quality and climate policies.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy