SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schaber J) srt2:(2010-2014)"

Sökning: WFRF:(Schaber J) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Petelenz-Kurdziel, Elzbieta, et al. (författare)
  • Quantitative Analysis of Glycerol Accumulation, Glycolysis and Growth under Hyper Osmotic Stress
  • 2013
  • Ingår i: PLoS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 9:6
  • Tidskriftsartikel (refereegranskat)abstract
    • We provide an integrated dynamic view on a eukaryotic osmolyte system, linking signaling with regulation of gene expression, metabolic control and growth. Adaptation to osmotic changes enables cells to adjust cellular activity and turgor pressure to an altered environment. The yeast Saccharomyces cerevisiae adapts to hyperosmotic stress by activating the HOG signaling cascade, which controls glycerol accumulation. The Hog1 kinase stimulates transcription of genes encoding enzymes required for glycerol production (Gpd1, Gpp2) and glycerol import (Stl1) and activates a regulatory enzyme in glycolysis (Pfk26/27). In addition, glycerol outflow is prevented by closure of the Fps1 glycerol facilitator. In order to better understand the contributions to glycerol accumulation of these different mechanisms and how redox and energy metabolism as well as biomass production are maintained under such conditions we collected an extensive dataset. Over a period of 180 min after hyperosmotic shock we monitored in wild type and different mutant cells the concentrations of key metabolites and proteins relevant for osmoadaptation. The dataset was used to parameterize an ODE model that reproduces the generated data very well. A detailed computational analysis using time-dependent response coefficients showed that Pfk26/27 contributes to rerouting glycolytic flux towards lower glycolysis. The transient growth arrest following hyperosmotic shock further adds to redirecting almost all glycolytic flux from biomass towards glycerol production. Osmoadaptation is robust to loss of individual adaptation pathways because of the existence and upregulation of alternative routes of glycerol accumulation. For instance, the Stl1 glycerol importer contributes to glycerol accumulation in a mutant with diminished glycerol production capacity. In addition, our observations suggest a role for trehalose accumulation in osmoadaptation and that Hog1 probably directly contributes to the regulation of the Fps1 glycerol facilitator. Taken together, we elucidated how different metabolic adaptation mechanisms cooperate and provide hypotheses for further experimental studies.
  •  
4.
  •  
5.
  • Talemi, Soheil Rastgou, et al. (författare)
  • Mathematical modelling of arsenic transport, distribution and detoxification processes in yeast.
  • 2014
  • Ingår i: Molecular Microbiology. - : Wiley. - 0950-382X .- 1365-2958. ; 92:6, s. 1343-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Arsenic has a dual role as causative and curative agent of human disease. Therefore, there is considerable interest in elucidating arsenic toxicity and detoxification mechanisms. By an ensemble modelling approach, we identified a best parsimonious mathematical model which recapitulates and predicts intracellular arsenic dynamics for different conditions and mutants, thereby providing novel insights into arsenic toxicity and detoxification mechanisms in yeast, which could partly be confirmed experimentally by dedicated experiments. Specifically, our analyses suggest that: (i) arsenic is mainly protein-bound during short-term (acute) exposure, whereas glutathione-conjugated arsenic dominates during long-term (chronic) exposure, (ii) arsenic is not stably retained, but can leave the vacuole via an export mechanism, and (iii) Fps1 is controlled by Hog1-dependent and Hog1-independent mechanisms during arsenite stress. Our results challenge glutathione depletion as a key mechanism for arsenic toxicity and instead suggest that (iv) increased glutathione biosynthesis protects the proteome against the damaging effects of arsenic and that (v) widespread protein inactivation contributes to the toxicity of this metalloid. Our work in yeast may prove useful to elucidate similar mechanisms in higher eukaryotes and have implications for the use of arsenic in medical therapy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy