SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schleucher Jürgen Professor) srt2:(2007-2009)"

Sökning: WFRF:(Schleucher Jürgen Professor) > (2007-2009)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Augusti, Angela, 1968- (författare)
  • Monitoring climate and plant physiology using deuterium isotopomers of carbohydrates
  • 2007
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Climate is changing and it is certain that this change is due to human activities. Atmospheric greenhouse gases have been rising in an unprecedented way during the last two centuries, although the land biosphere has dampened their increase by absorbing CO2 emitted by anthropogenic activities. However, it is unclear if this will continue in the future. This uncertainty makes it difficult to predict future climate changes and to determine how much greenhouse gas emissions must be reduced to protect climate. To understand the future role of plants in limiting the atmospheric CO2 level, the effect of increasing CO2 on plant photosynthesis and productivity has been studied. However, studies on trees showed contradictory results, which depended on the duration of the experiment. This revealed that an initial strong CO2 fertilization may be a transient response that disappears after a few years. Because climate changes over centuries, we must explore the response of vegetation to increasing CO2 on this time scale. Studying tree rings is a good alternative to impractical decade-long experiments, because trees have experienced the CO2 increase during the last 200 years and may already have responded to it. This thesis shows that the intramolecular distribution of the stable hydrogen isotope deuterium (deuterium isotopomer distribution, DID) of tree rings is a reliable tool to study long-term plant-climate adaptations. The premise for this is that the deuterium abundance in tree rings depends on environmental as well as physiological factors. Using newly developed methodology for DID measurements, the influences of both factors can be separated. Applied to tree rings, separating both factors opens a strategy for simultaneous reconstruction of climate and of physiological responses. The results presented show that DIDs are influenced by kinetic isotope effects of enzymes, allowing studies of metabolic regulation. We show that the abundances of specific D isotopomers in tree-ring cellulose indeed allow identifying environmental and physiological factors. For example, the D2 isotopomer is mostly influenced by environment, its abundance should allow better reconstruction of past temperature. On the other hand, the abundance ratio of two isotopomers (D6R and D6S) depends on atmospheric CO2, and might serve as a measure of the efficiency of photosynthesis (ratio of photorespiration to assimilation). The presence of this dependence in all species tested and in tree-ring cellulose allows studying adaptations of plants to increasing CO2 on long time scales, using tree-ring series or other remnant plant material.
  •  
2.
  • Petzold, Katja, 1981- (författare)
  • NMR studies of host-pathogen interactions
  • 2009
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis describes the use of Nuclear Magnetic Resonance (NMR) for characterizing two host-pathogen interactions: The behavior of a regulatory RNA of the Hepatitis B virus (HBV) and the attachment of Helicobacter pylori (H. pylori) to the gastric mucosa. NMR is a powerful tool in biomedicine, because molecules ranging from small ligands to biomacromolecules can be studied with atomic resolution. Different NMR experiments are designed to determine structures, or to monitor interactions, folding, stability or motion. Paper I describes the analysis of the motions of a regulatory RNA of HBV. The NMR structure of the RNA had revealed before that several well-conserved nucleotides adopt multiple conformations. Therefore an analysis of possible underlying motions was undertaken using two different NMR techniques, one of which (off-resonance ROESY) was applied to nucleic acids for the first time. The observed motions suggest an explanation why the structurally poorly defined nucleotides are highly conserved. In paper II we improved the ROESY NMR experiment, which is used to measure internuclear distances for structure determination of medium-sized molecules. Using a small protein and an organometallic complex as examples, we demonstrated that the new EASY ROESY experiment yields clean spectra that can directly be integrated to derive interatomic distances. H. pylori, the bacterium involved in peptic ulcer disease and gastric cancer, survives in the harsh acidic environment of the stomach. It possesses many membrane proteins which mediate adherence, raising the question, if their activity is related to membrane composition. In paper III & IV we analyzed therefore the phospholipid composition of H. pylori membranes. In paper III, an advanced method for the analysis of the phospholipid composition of biological membranes was developed. The two-dimensional semi-constant-time 31P,1H-COSY experiment combines information from phosphorus and hydrogen atoms of phospholipids for their unambiguous identification. Furthermore, the high resolution of the two-dimensional experiment allows the quantification of phospholipids where conventional methods fail. In paper IV we applied the new experiment to analyze the lipid composition of whole H. pylori cells, their inner and outer membranes, and of vesicles shed by the bacterium. The goal of this study was to characterize the vesicles which are suggested to play a role in the inflammation process. We established that the outer membrane and the vesicles have similar phospholipid compositions, suggesting that the vesicles are largely derived from the outer membrane. The NMR results presented here elucidate details of molecular systems engaged in pathogenicity, as basis for therapeutic strategies against these pathogens.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy