SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schouenborg Jens) srt2:(2015-2019)"

Sökning: WFRF:(Schouenborg Jens) > (2015-2019)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • D. Holmkvist, Alexander, et al. (författare)
  • Hydrophobic ion pairing of a minocycline/Ca(2+)/AOT complex for preparation of drug-loaded PLGA nanoparticles with improved sustained release.
  • 2016
  • Ingår i: International Journal of Pharmaceutics. - : Elsevier BV. - 1873-3476 .- 0378-5173. ; 499:1-2, s. 351-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Polymeric nanoparticles is an established and efficient means to achieve controlled release of drugs. Incorporation of minocycline, an antibiotic with anti-inflammatory and neuroprotective properties, into biodegradable nanoparticles may therefore provide an efficient means to combat foreign body reactions to implanted electrodes in the brain. However, minocycline is commonly associated with poor encapsulation efficiencies and/or fast release rates due to its high solubility in water. Moreover, minocycline is unstable under conditions of low and high pH, heat and exposure to light, which exacerbate the challenges of encapsulation. In this work drug loaded PLGA nanoparticles were prepared by a modified emulsification-solvent-diffusion technique and characterized for size, drug encapsulation and in vitro drug release. A novel hydrophobic ion pair complex of minocycline, Ca(2+) ions and the anionic surfactant AOT was developed to protect minocycline from degradation and prolong its release. The optimized formulation resulted in particle sizes around 220nm with an entrapment efficiency of 43% and showed drug release over 30 days in artificial cerebrospinal fluid. The present results constitute a substantial increase in release time compared to what has hitherto been achieved for minocycline and indicate that such particles might provide useful for sustained drug delivery in the CNS.
  •  
4.
  • Etemadi, Leila, et al. (författare)
  • Embedded Ultrathin Cluster Electrodes for Long-Term Recordings in Deep Brain Centers
  • 2016
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Neural interfaces which allow long-term recordings in deep brain structures in awake freely moving animals have the potential of becoming highly valuable tools in neuroscience. However, the recording quality usually deteriorates over time, probably at least partly due to tissue reactions caused by injuries during implantation, and subsequently micro-forces due to a lack of mechanical compliance between the tissue and neural interface. To address this challenge, we developed a gelatin embedded neural interface comprising highly flexible electrodes and evaluated its long term recording properties. Bundles of ultrathin parylene C coated platinum electrodes (N = 29) were embedded in a hard gelatin based matrix shaped like a needle, and coated with Kollicoat™ to retard dissolution of gelatin during the implantation. The implantation parameters were established in an in vitro model of the brain (0.5% agarose). Following a craniotomy in the anesthetized rat, the gelatin embedded electrodes were stereotactically inserted to a pre-target position, and after gelatin dissolution the electrodes were further advanced and spread out in the area of the subthalamic nucleus (STN). The performance of the implanted electrodes was evaluated under anesthesia, during 8 weeks. Apart from an increase in the median-noise level during the first 4 weeks, the electrode impedance and signal-to-noise ratio of single-units remained stable throughout the experiment. Histological postmortem analysis confirmed implantation in the area of STN in most animals. In conclusion, by combining novel biocompatible implantation techniques and ultra-flexible electrodes, long-term neuronal recordings from deep brain structures with no significant deterioration of electrode function were achieved.
  •  
5.
  • Gällentoft, Lina, et al. (författare)
  • Impact of degradable nanowires on long-term brain tissue responses
  • 2016
  • Ingår i: Journal of Nanobiotechnology. - : Springer Science and Business Media LLC. - 1477-3155. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A promising approach to improve the performance of neural implants consists of adding nanomaterials, such as nanowires, to the surface of the implant. Nanostructured interfaces could improve the integration and communication stability, partly through the reduction of the cell-to-electrode distance. However, the safety issues of implanted nanowires in the brain need to be evaluated and understood before nanowires can be used on the surface of implants for long periods of time. To this end we here investigate whether implanted degradable nanowires offer any advantage over non-degradable nanowires in a long-term in vivo study (1 year) with respect to brain tissue responses. Results: The tissue response after injection of degradable silicon oxide (SiOx)-coated gallium phosphide nanowires and biostable hafnium oxide-coated GaP nanowires into the rat striatum was compared. One year after nanowire injection, no significant difference in microglial or astrocytic response, as measured by staining for ED1 and glial fibrillary acidic protein, respectively, or in neuronal density, as measured by staining for NeuN, was found between degradable and biostable nanowires. Of the cells investigated, only microglia cells had engulfed the nanowires. The SiOx-coated nanowire residues were primarily seen in aggregated hypertrophic ED1-positive cells, possibly microglial cells that have fused to create multinucleated giant cells. Occasionally, degradable nanowires with an apparently intact shape were found inside single, small ED1-positive cells. The biostable nanowires were found intact in microglia cells of both phenotypes described. Conclusion: The present study shows that the degradable nanowires remain at least partly in the brain over long time periods, i.e. 1 year; however, no obvious bio-safety issues for this degradable nanomaterial could be detected.
  •  
6.
  • Gällentoft, Lina, et al. (författare)
  • Size-dependent long-term tissue response to biostable nanowires in the brain.
  • 2015
  • Ingår i: Biomaterials. - : Elsevier BV. - 1878-5905 .- 0142-9612. ; 42, s. 172-183
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanostructured neural interfaces, comprising nanotubes or nanowires, have the potential to overcome the present hurdles of achieving stable communication with neuronal networks for long periods of time. This would have a strong impact on brain research. However, little information is available on the brain response to implanted high-aspect-ratio nanoparticles, which share morphological similarities with asbestos fibres. Here, we investigated the glial response and neuronal loss in the rat brain after implantation of biostable and structurally controlled nanowires of different lengths for a period up to one year post-surgery. Our results show that, as for lung and abdominal tissue, the brain is subject to a sustained, local inflammation when biostable and high-aspect-ratio nanoparticles of 5 μm or longer are present in the brain tissue. In addition, a significant loss of neurons was observed adjacent to the 10 μm nanowires after one year. Notably, the inflammatory response was restricted to a narrow zone around the nanowires and did not escalate between 12 weeks and one year. Furthermore, 2 μm nanowires did not cause significant inflammatory response nor significant loss of neurons nearby. The present results provide key information for the design of future neural implants based on nanomaterials.
  •  
7.
  • Kumosa, Lucas S., et al. (författare)
  • Gelatin promotes rapid restoration of the blood brain barrier after acute brain injury
  • 2018
  • Ingår i: Acta Biomaterialia. - : Elsevier BV. - 1742-7061. ; 65, s. 137-149
  • Tidskriftsartikel (refereegranskat)abstract
    • Gelatin coating of brain implants is known to provide considerable benefits in terms of reduced inflammatory sequalae and long-term neuroprotective effects. However, the mechanisms for gelatin's protective role in brain injury are still unknown. To address this question, cellular and molecular markers were studied with quantitative immunohistochemical microscopy at acute (<2. hours, 1, 3. days), intermediate (1-2 weeks) and long-term time points (6 weeks) after transient insertion of stainless steel needles into female rat cortex cerebri with or without gelatin coating. Compared to non-coated controls, injuries caused by gelatin coated needles showed a significantly faster resolution of post-stab bleeding/leakage and differential effects on different groups of microglia cells. While similar levels of matrix metalloproteinase (MMP-2 and MMP-9, two gelatinases) was found for coated and noncoated needle stabs during the first week, markedly increased levels of both MMPs was seen for gelatin-coated but not non-coated needle stabs after 2. weeks. Neuronal populations and activated astrocytes were largely unaffected. In conclusion, the beneficial effects of gelatin may be the combined results of faster healing of the blood brain barrier curtailing leakage of blood borne molecules/cells into brain parenchyma and to a modulation of the microglial population response favoring restitution of the injured tissue. These findings present an important therapeutic potential for gelatin coatings in various disease, injury and surgical conditions. Statement of Significance: The neural interfaces field holds great promise to enable elucidation of neural information processing and to develop new implantable devices for stimulation based therapy. Currently, this field is struggling to find solutions for reducing tissue reactions to implanted micro and nanotechnology. Prior studies have recently shown that gelatin coatings lower activation of digestive microglia and mitigate the ubiquitous loss of neurons adjacent to implanted probes, both of which impede implant function. The underlying mechanisms remain to be elucidated, however. Our findings demonstrate for the first time that gelatin has a significant effect on the BBB by promoting rapid restoration of integrity after injury. Moreover, gelatin alters microglia phenotypes and modulates gelatinase activity for up to 2. weeks favoring anti-inflammation and restoration of the tissue. Given the key importance of the BBB for normal brain functions, we believe our findings have substantial significance and will be highly interesting to researchers in the biomaterial field.
  •  
8.
  • Köhler, Per, et al. (författare)
  • Influence of probe flexibility and gelatin embedding on neuronal density and glial responses to brain implants.
  • 2015
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 10:3
  • Tidskriftsartikel (refereegranskat)abstract
    • To develop long-term high quality communication between brain and computer, a key issue is how to reduce the adverse foreign body responses. Here, the impact of probe flexibility and gelatine embedding on long-term (6w) tissue responses, was analyzed. Probes of same polymer material, size and shape, flexible mainly in one direction, were implanted in rat cerebral cortex (nimplants = 3 x 8) in two orientations with respect to the major movement direction of the brain relative to the skull: parallel to (flex mode) or transverse to (rigid mode). Flex mode implants were either embedded in gelatin or non-embedded. Neurons, activated microglia and astrocytes were visualized using immunohistochemistry. The astrocytic reactivity, but not microglial response, was significantly lower to probes implanted in flex mode as compared to rigid mode. The microglial response, but not astrocytic reactivity, was significantly smaller to gelatin embedded probes (flex mode) than non-embedded. Interestingly, the neuronal density was preserved in the inner zone surrounding gelatin embedded probes. This contrasts to the common reports of reduced neuronal density close to implanted probes. In conclusion, sheer stress appears to be an important factor for astrocytic reactivity to implanted probes. Moreover, gelatin embedding can improve the neuronal density and reduce the microglial response close to the probe.
  •  
9.
  • Lee, Heui Chang, et al. (författare)
  • Histological evaluation of flexible neural implants; Flexibility limit for reducing the tissue response?
  • 2017
  • Ingår i: Journal of Neural Engineering. - : IOP Publishing. - 1741-2560 .- 1741-2552. ; 14:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective. Flexible neural probes are hypothesized to reduce the chronic foreign body response (FBR) mainly by reducing the strain-stress caused by an interplay between the tethered probe and the brain's micromotion. However, a large discrepancy of Young's modulus still exists (3-6 orders of magnitude) between the flexible probes and the brain tissue. This raises the question of whether we need to bridge this gap; would increasing the probe flexibility proportionally reduce the FBR? Approach. Using novel off-stoichiometry thiol-enes-epoxy (OSTE+) polymer probes developed in our previous work, we quantitatively evaluated the FBR to four types of probes with different softness: silicon (∼150 GPa), polyimide (1.5 GPa), OSTE+Hard (300 MPa), and OSTE+Soft (6 MPa). Main results. We observed a significant reduction in the fluorescence intensity of biomarkers for activated microglia/macrophages and blood-brain barrier (BBB) leakiness around the three soft polymer probes compared to the silicon probe, both at 4 weeks and 8 weeks post-implantation. However, we did not observe any consistent differences in the biomarkers among the polymer probes. Significance. The results suggest that the mechanical compliance of neural probes can mediate the degree of FBR, but its impact diminishes after a hypothetical threshold level. This infers that resolving the mechanical mismatch alone has a limited effect on improving the lifetime of neural implants.
  •  
10.
  • Ljungquist, Bengt, et al. (författare)
  • A Bit-Encoding Based New Data Structure for Time and Memory Efficient Handling of Spike Times in an Electrophysiological Setup
  • 2018
  • Ingår i: Neuroinformatics. - : Springer. - 1539-2791 .- 1559-0089. ; 16:2, s. 217-229
  • Tidskriftsartikel (refereegranskat)abstract
    • Recent neuroscientific and technical developments of brain machine interfaces have put increasing demands on neuroinformatic databases and data handling software, especially when managing data in real time from large numbers of neurons. Extrapolating these developments we here set out to construct a scalable software architecture that would enable near-future massive parallel recording, organization and analysis of neurophysiological data on a standard computer. To this end we combined, for the first time in the present context, bit-encoding of spike data with a specific communication format for real time transfer and storage of neuronal data, synchronized by a common time base across all unit sources. We demonstrate that our architecture can simultaneously handle data from more than one million neurons and provide, in real time (< 25 ms), feedback based on analysis of previously recorded data. In addition to managing recordings from very large numbers of neurons in real time, it also has the capacity to handle the extensive periods of recording time necessary in certain scientific and clinical applications. Furthermore, the bit-encoding proposed has the additional advantage of allowing an extremely fast analysis of spatiotemporal spike patterns in a large number of neurons. Thus, we conclude that this architecture is well suited to support current and near-future Brain Machine Interface requirements.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy