SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schrader J) srt2:(2001-2004)"

Sökning: WFRF:(Schrader J) > (2001-2004)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schrader, J., et al. (författare)
  • A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity
  • 2004
  • Ingår i: The Plant Cell. - : Oxford University Press (OUP). - 1040-4651 .- 1532-298X. ; 16:9, s. 2278-2292
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant growth is the result of cell proliferation in meristems, which requires a careful balance between the formation of new tissue and the maintenance of a set of undifferentiated stem cells. Recent studies have provided important information on several genetic networks responsible for stem cell maintenance and regulation of cell differentiation in the apical meristems of shoots and roots. Nothing, however, is known about the regulatory networks in secondary meristems like the vascular cambium of trees. We have made use of the large size and highly regular layered organization of the cambial meristem to create a high-resolution transcriptional map covering 220 mum of the cambial region of aspen (Populus tremula). Clusters of differentially expressed genes revealed substantial differences in the transcriptomes of the six anatomically homogenous cell layers in the meristem zone. Based on transcriptional and anatomical data, we present a model for the position of the stem cells and the proliferating mother cells in the cambial zone. We also provide sets of marker genes for different stages of xylem and phloem differentiation and identify potential regulators of cambial meristem activity. Interestingly, analysis of known regulators of apical meristem development indicates substantial similarity in regulatory networks between primary and secondary meristems.
  •  
2.
  •  
3.
  • Gray-Mitsumune, Madoka, et al. (författare)
  • Expansins abundant in secondary xylem belong to subgroup a of the alpha-expansin gene family (1 w )
  • 2004
  • Ingår i: Plant Physiology. - : Oxford University Press (OUP). - 0032-0889 .- 1532-2548. ; 135:3, s. 1552-1564
  • Tidskriftsartikel (refereegranskat)abstract
    • Differentiation of xylem cells in dicotyledonous plants involves expansion of the radial primary cell walls and intrusive tip growth of cambial derivative cells prior to the deposition of a thick secondary wall essential for xylem function. Expansins are cell wall-residing proteins that have an ability to plasticize the cellulose-hemicellulose network of primary walls. We found expansin activity in proteins extracted from the cambial region of mature stems in a model tree species hybrid aspen (Populus tremula X Populus tremuloides Michx). We identified three a-expansin genes (PttEXP1, PttEXP2, and PttEXP8) and one beta-expansin gene (PttEXPB1) in a cambial region expressed sequence tag library, among which PttEXP1 was most abundantly represented. Northern-blot analyses in aspen vegetative organs and tissues showed that PttEXP1 was specifically expressed in mature stems exhibiting secondary growth, where it was present in the cambium and in the radial expansion zone. By contrast, PttEXP2 was mostly expressed in developing leaves. In situ reverse transcription-PCR provided evidence for accumulation of mRNA of PttEXP1 along with ribosomal rRNA at the tips of intrusively growing xylem fibers, suggesting that PttEXP1 protein has a role in intrusive tip growth. An examination of tension wood and leaf cDNA libraries identified another expansin, PttEXP5, very similar to PttEXP1, as the major expansin in developing tension wood, while PttEXP3 was the major expansin expressed in developing leaves. Comparative analysis of expansins expressed in woody stems in aspen, Arabidopsis, and pine showed that the most abundantly expressed expansins share sequence similarities, belonging to the subfamily A of alpha-expansins and having two conserved motifs at the beginning and end of the mature protein, RIPVG and KNFRV, respectively. This conservation suggests that these genes may share a specialized, not yet identified function.
  •  
4.
  • Hertzberg, M., et al. (författare)
  • A transcriptional roadmap to wood formation
  • 2001
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 98:25, s. 14732-14737
  • Tidskriftsartikel (refereegranskat)abstract
    • The large vascular meristem of poplar trees with its highly organized secondary xylem enables the boundaries between different developmental zones to be easily distinguished. This property of wood-forming tissues allowed us to determine a unique tissue-specific transcript profile for a well defined developmental gradient. RNA was prepared from different developmental stages of xylogenesis for DNA microarray analysis by using a hybrid aspen unigene set consisting of 2,995 expressed sequence tags. The analysis revealed that the genes encoding lignin and cellulose biosynthetic enzymes, as well as a number of transcription factors and other potential regulators of xylogenesis, are under strict developmental stage-specific transcriptional regulation.
  •  
5.
  • Karpinska, B., et al. (författare)
  • MYB transcription factors are differentially expressed and regulated during secondary vascular tissue development in hybrid aspen
  • 2004
  • Ingår i: Plant Molecular Biology. - : Springer Science and Business Media LLC. - 0167-4412 .- 1573-5028. ; 56:2, s. 255-270
  • Tidskriftsartikel (refereegranskat)abstract
    • More than 120,000 poplar ESTs have been sequenced from 20 different cDNA libraries by the Swedish Centre for Tree Functional Genomics. We screened this EST collection for MYB transcription factors involved in secondary vascular tissue formation, and genes assigned as PttMYB3Ra, PttMYB4a and PttMYB21a were selected for further characterisation. Three MYB genes showed different expression patterns in various organs, tissues and stem sub-sections representing different developmental stages of vascular tissue formation. Furthermore, the analysis showed that PttMYB21a expression was much higher in secondary cell wall formation zone of xylem and phloem fibers than in other developmental zones. Transgenic hybrid aspen plants, expressing the 3'-part of the PttMYB21a gene in antisense orientation were generated to assess the function of PttMYB21a gene in vascular tissue formation and lignification. All transgenic lines showed reduced growth and had fewer internodes compared to the wild-type. The analysis of selected lines showed that acid soluble lignin present in the bark was higher in transgenic lines as compared to wild-type plants. Moreover a higher transcript level of caffeoyl-CoA 3-O-methyltransferase [CCoAOMT];EC2.1.1.104) was found in the phloem of the transgenic plants, suggesting that PttMYB21a might function as a transcriptional repressor.
  •  
6.
  • Schrader, J., et al. (författare)
  • Cambial meristem dormancy in trees involves extensive remodelling of the transcriptome
  • 2004
  • Ingår i: The Plant Journal. - Malden : Wiley-Blackwell. - 0960-7412 .- 1365-313X. ; 40:2, s. 173-187
  • Tidskriftsartikel (refereegranskat)abstract
    • The establishment of the dormant state in meristems involves considerable physiological and metabolic alterations necessary for surviving unfavourable growth conditions. However, a global molecular analysis of dormancy in meristems has been hampered by the difficulty in isolating meristem cells. We used cryosectioning to isolate purified cambial meristem cells from the woody plant Populus tremula during active growth and dormancy. These samples were used to generate meristem-specific cDNA libraries and for cDNA microarray experiments to define the global transcriptional changes underlying cambial dormancy. The results indicate a significant reduction in the complexity of the cambial transcriptome in the dormant state. Although cell division is terminated in the dormant cambium, the cell cycle machinery appears to be maintained in a skeletal state as suggested by the continued presence of transcripts for several cell cycle regulators. The downregulation of PttPIN1 and PttPIN2 transcripts explains the reduced basipetal polar auxin transport during dormancy. The induction of a member of the SINA family of ubiquitin ligases implicated in auxin signalling indicates a potential mechanism for modulation of auxin sensitivity during cambial dormancy. The metabolic alterations during dormancy are mirrored in the induction of genes involved in starch breakdown and the glyoxysomal cycle. Interestingly, the induction of RGA1 like gene suggests modification of gibberellin signalling in cambial dormancy. The induction of genes such as poplar orthologues of FIE and HAP2 indicates a potential role for these global regulators of transcription in orchestrating extensive changes in gene expression during dormancy.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy