SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schrock P.) srt2:(2020-2024)"

Sökning: WFRF:(Schrock P.) > (2020-2024)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wimmer, K., et al. (författare)
  • Isomeric states in neutron-rich nuclei near N=40
  • 2021
  • Ingår i: Physical Review C. - : American Physical Society (APS). - 2469-9985 .- 2469-9993. ; 104:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Neutron-rich nuclei in the vicinity of the N = 40 island of inversion are characterized by shell evolution and exhibit deformed ground states. In several nuclei isomeric states have been observed and attributed to excitations to the intruder neutron 1g(9/2) orbital. In the present paper we searched for isomeric states in nuclei around N = 40, Z = 22 produced by projectile fragmentation at the Radioactive Isotope Beam Factory. Delayed. rays were detected by the Euroball RIKEN Cluster Array germanium detector array gamma High statistics data allowed for an updated decay scheme of V-60. The lifetime of an isomeric state in V-64 was measured for the first time in the present experiment. A previously unobserved isomeric state was discovered in Sc-58. The measured lifetime suggests a parity changing transition, originating from an odd number of neutrons in the 1g(9/2) orbital. The nature of the isomeric state in Sc-58 is, thus, different from isomers in the less exotic V and Sc nuclei.
  •  
2.
  •  
3.
  • Holl, Matthias, 1986, et al. (författare)
  • Border of the island of inversion: Unbound states in Ne-29
  • 2022
  • Ingår i: Physical Review C. - 2469-9985 .- 2469-9993. ; 105:3
  • Tidskriftsartikel (refereegranskat)abstract
    • The nucleus Ne-29 is situated at the border of the island of inversion. Despite significant efforts, no bound low-lying intruder f(7/2) state, which would place Ne-29 firmly inside the island of inversion, has yet been observed. Here, the first investigation of unbound states of Ne-29 is reported. The states were populated in Ne-30(p, pn) and Na-30(p, 2p) reactions at a beam energy of around 230 MeV/nucleon, and analyzed in terms of their resonance properties, partial cross sections, and momentum distributions. The momentum distributions are compared to calculations using the eikonal, direct reaction model, allowing assignments for the observed states. The lowest lying resonance at an excitation energy of 1.48(4) MeV shows clear signs of a significant l = 3 component, giving first evidence for f(7/2) single particle strength in Ne-29. The excitation energies and strengths of the observed states are compared to shell-model calculations using the SDPF-U-MIX interaction.
  •  
4.
  • Revel, A., et al. (författare)
  • Extending the Southern Shore of the Island of Inversion to F-28
  • 2020
  • Ingår i: Physical Review Letters. - 1079-7114 .- 0031-9007. ; 124:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed spectroscopy of the neutron-unbound nucleus F-28 has been performed for the first time following proton/neutron removal from Ne-29/F-29 beams at energies around 230 MeV=nucleon. The invariant-mass spectra were reconstructed for both the F-27((*)) + n and F-26((*)) + 2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the F-28 ground state, with S-n(F-28) = -199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S-n(F-27) = 1620(60) keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of F-28. Importantly, in the case of the ground state, the reconstructed F-27 + n momentum distribution following neutron removal from F-29 indicates that it arises mainly from the 1p(3/2) neutron intruder configuration. This demonstrates that the island of inversion around N = 20 includes F-28, and most probably F-29, and suggests that O-28 is not doubly magic.
  •  
5.
  • Storck, Sonja, et al. (författare)
  • Lifetime measurement of the 26 0 g.s. At SAMURAI
  • 2020
  • Ingår i: Journal of Physics: Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 1643:1
  • Konferensbidrag (refereegranskat)abstract
    • The ground state of the neutron unbound nucleus O is speculated to have a lifetime in the pico-second regime. In order to determine the decay lifetime of the O ground state with high sensitivity and precision, a new method has been applied. The experiment was performed in December 2016 at the Superconducting Analyzer for MUlti-particle from Radio Isotope Beams (SAMURAI) at the Radioactive Isotope Beam Factory (RIBF) at RIKEN. A F beam was produced in the fragment separator BigRIPS and impinged on a W/Pt target stack where O was produced. According to the lifetime, the decay of O happens either in or outside the target. Thus, the velocity difference between the decay neutrons and the fragment O delivers a characteristic spectrum from which the lifetime can be extracted.
  •  
6.
  • Wang, H., et al. (författare)
  • Intruder configurations in 29 Ne at the transition into the island of inversion: Detailed structure study of 28 Ne
  • 2023
  • Ingår i: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - 0370-2693. ; 843
  • Tidskriftsartikel (refereegranskat)abstract
    • Detailed γ-ray spectroscopy of the exotic neon isotope 28Ne has been performed for the first time using the one-neutron removal reaction from 29Ne on a liquid hydrogen target at 240 MeV/nucleon. Based on an analysis of parallel momentum distributions, a level scheme with spin-parity assignments has been constructed for 28Ne and the negative-parity states are identified for the first time. The measured partial cross sections and momentum distributions reveal a significant intruder p-wave strength providing evidence of the breakdown of the N=20 and N=28 shell gaps. Only a weak, possible f-wave strength was observed to bound final states. Large-scale shell-model calculations with different effective interactions do not reproduce the large p-wave and small f-wave strength observed experimentally, indicating an ongoing challenge for a complete theoretical description of the transition into the island of inversion along the Ne isotopic chain.
  •  
7.
  •  
8.
  •  
9.
  • Kondo, Y., et al. (författare)
  • First observation of 28 O
  • 2023
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 620:7976, s. 965-970
  • Tidskriftsartikel (refereegranskat)abstract
    • Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10−21s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of 28O and 27O through their decay into 24O and four and three neutrons, respectively. The 28O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers1,2, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called ‘doubly magic’ nuclei. Both 27O and 28O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of 28O from a 29F beam is consistent with it not exhibiting a closed N = 20 shell structure.
  •  
10.
  • Lehr, C., et al. (författare)
  • Unveiling the two-proton halo character of 17 Ne: Exclusive measurement of quasi-free proton-knockout reactions
  • 2022
  • Ingår i: Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics. - : Elsevier BV. - 0370-2693 .- 1873-2445. ; 827
  • Tidskriftsartikel (refereegranskat)abstract
    • The proton drip-line nucleus 17Ne is investigated experimentally in order to determine its two-proton halo character. A fully exclusive measurement of the 17Ne(p,2p)16F→15⁎O+p quasi-free one-proton knockout reaction has been performed at GSI at around 500 MeV/nucleon beam energy. All particles resulting from the scattering process have been detected. The relevant reconstructed quantities are the angles of the two protons scattered in quasi-elastic kinematics, the decay of 16F into 15O (including γ decays from excited states) and a proton, as well as the 15O+p relative-energy spectrum and the 16F momentum distributions. The latter two quantities allow an independent and consistent determination of the fractions of l=0 and l=2 motion of the valence protons in 17Ne. With a resulting relatively small l=0 component of only around 35(3)%, it is concluded that 17Ne exhibits a rather modest halo character only. The quantitative agreement of the two values deduced from the energy spectrum and the momentum distributions supports the theoretical treatment of the calculation of momentum distributions after quasi-free knockout reactions at high energies by taking into account distortions based on the Glauber theory. Moreover, the experimental data allow the separation of valence-proton knockout and knockout from the 15O core. The latter process contributes with 11.8(3.1) mb around 40% to the total proton-knockout cross section of 30.3(2.3) mb, which explains previously reported contradicting conclusions derived from inclusive cross sections.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy