SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schuller J) srt2:(2015-2019)"

Sökning: WFRF:(Schuller J) > (2015-2019)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Vögel, H. -J, et al. (författare)
  • Emotion-awareness for intelligent vehicle assistants : A research agenda
  • 2018
  • Ingår i: Proceedings - International Conference on Software Engineering. - New York, NY, USA : IEEE Computer Society. - 9781450357395 ; , s. 11-15
  • Konferensbidrag (refereegranskat)abstract
    • EVA1 is describing a new class of emotion-aware autonomous systems delivering intelligent personal assistant functionalities. EVA requires a multi-disciplinary approach, combining a number of critical building blocks into a cybernetics systems/software architecture: emotion aware systems and algorithms, multimodal interaction design, cognitive modelling, decision making and recommender systems, emotion sensing as feedback for learning, and distributed (edge) computing delivering cognitive services.
  •  
3.
  • Mattern, M., et al. (författare)
  • SEDIGISM: the kinematics of ATLASGAL filaments
  • 2018
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 619
  • Tidskriftsartikel (refereegranskat)abstract
    • Analyzing the kinematics of filamentary molecular clouds is a crucial step toward understanding their role in the star formation process. Therefore, we study the kinematics of 283 filament candidates in the inner Galaxy, that were previously identified in the ATLASGAL dust continuum data. The (CO)-C-13(2 - 1) and (CO)-O-18(2 - 1) data of the SEDIGISM survey (Structure, Excitation, and Dynamics of the Inner Galactic Inter Stellar Medium) allows us to analyze the kinematics of these targets and to determine their physical properties at a resolution of 30 '' and 0.25 km s(-1). To do so, we developed an automated algorithm to identify all velocity components along the line-of-sight correlated with the ATLASGAL dust emission, and derive size, mass, and kinematic properties for all velocity components. We find two-third of the filament candidates are coherent structures in position-position-velocity space. The remaining candidates appear to be the result of a superposition of two or three filamentary structures along the line-of- sight. At the resolution of the data, on average the filaments are in agreement with Plummer-like radial density profiles with a power-law exponent of p approximate to 1.5 +/- 0.5, indicating that they are typically embedded in a molecular cloud and do not have a well-defined outer radius. Also, we find a correlation between the observed mass per unit length and the velocity dispersion of the filament of m proportional to o(v)(2). We show that this relation can be explained by a virial balance between self-gravity and pressure. Another possible explanation could be radial collapse of the filament, where we can exclude infall motions close to the free-fall velocity.
  •  
4.
  •  
5.
  • Merkl, Philipp, et al. (författare)
  • Ultrafast transition between exciton phases in van der Waals heterostructures
  • 2019
  • Ingår i: Nature Materials. - : Springer Science and Business Media LLC. - 1476-4660 .- 1476-1122. ; 18:7, s. 691-696
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • © 2019, The Author(s), under exclusive licence to Springer Nature Limited. Heterostructures of atomically thin van der Waals bonded monolayers have opened a unique platform to engineer Coulomb correlations, shaping excitonic1–3, Mott insulating4 or superconducting phases5,6. In transition metal dichalcogenide heterostructures7, electrons and holes residing in different monolayers can bind into spatially indirect excitons1,3,8–11 with a strong potential for optoelectronics11,12, valleytronics1,3,13, Bose condensation14, superfluidity14,15 and moiré-induced nanodot lattices16. Yet these ideas require a microscopic understanding of the formation, dissociation and thermalization dynamics of correlations including ultrafast phase transitions. Here we introduce a direct ultrafast access to Coulomb correlations between monolayers, where phase-locked mid-infrared pulses allow us to measure the binding energy of interlayer excitons in WSe2/WS2 hetero-bilayers by revealing a novel 1s–2p resonance, explained by a fully quantum mechanical model. Furthermore, we trace, with subcycle time resolution, the transformation of an exciton gas photogenerated in the WSe2 layer directly into interlayer excitons. Depending on the stacking angle, intra- and interlayer species coexist on picosecond scales and the 1s–2p resonance becomes renormalized. Our work provides a direct measurement of the binding energy of interlayer excitons and opens the possibility to trace and control correlations in novel artificial materials.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Hellwig, Malte, et al. (författare)
  • TCF4 (E2-2) harbors tumor suppressive functions in SHH medulloblastoma
  • 2019
  • Ingår i: Acta Neuropathologica. - : Springer Science and Business Media LLC. - 0001-6322 .- 1432-0533. ; 137:4, s. 657-673
  • Tidskriftsartikel (refereegranskat)abstract
    • The TCF4 gene encodes for the basic helix–loop–helix transcription factor 4 (TCF4), which plays an important role in the development of the central nervous system (CNS). Haploinsufficiency of TCF4 was found to cause Pitt-Hopkins syndrome (PTHS), a severe neurodevelopmental disorder. Recently, the screening of a large cohort of medulloblastoma (MB), a highly aggressive embryonal brain tumor, revealed almost 20% of adult patients with MB of the Sonic hedgehog (SHH) subtype carrying somatic TCF4 mutations. Interestingly, many of these mutations have previously been detected as germline mutations in patients with PTHS. We show here that overexpression of wild-type TCF4 in vitro significantly suppresses cell proliferation in MB cells, whereas mutant TCF4 proteins do not to the same extent. Furthermore, RNA sequencing revealed significant upregulation of multiple well-known tumor suppressors upon expression of wild-type TCF4. In vivo, a prenatal knockout of Tcf4 in mice caused a significant increase in apoptosis accompanied by a decreased proliferation and failed migration of cerebellar granule neuron precursor cells (CGNP), which are thought to be the cells of origin for SHH MB. In contrast, postnatal in vitro and in vivo knockouts of Tcf4 with and without an additional constitutive activation of the SHH pathway led to significantly increased proliferation of CGNP or MB cells. Finally, publicly available data from human MB show that relatively low expression levels of TCF4 significantly correlate with a worse clinical outcome. These results not only point to time-specific roles of Tcf4 during cerebellar development but also suggest a functional linkage between TCF4 mutations and the formation of SHH MB, proposing that TCF4 acts as a tumor suppressor during postnatal stages of cerebellar development.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy