SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schultzberg Marianne) srt2:(2015-2019)"

Sökning: WFRF:(Schultzberg Marianne) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eriksdotter, Maria, et al. (författare)
  • Plasma Fatty Acid Profiles in Relation to Cognition and Gender in Alzheimer's Disease Patients During Oral Omega-3 Fatty Acid Supplementation : The OmegAD Study
  • 2015
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 48:3, s. 805-812
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: ω3 fatty acids (ω3 FAs) may slow the rate of decline in cognitive performance in mild forms of cognitive impairment and Alzheimer's disease (AD). However, the relationship between changes of plasma ω3 FA levels and cognitive performance, as well as effects of gender, are poorly known.OBJECTIVE: To study the effect of 6-month administration of DHA-rich ω3 FA supplementation on plasma FA profiles in patients with mild to moderate AD in relation to cognitive performance and gender. This investigation is part of the OmegAD Study.METHODS: 174 AD patients (74 ± 9 years) were randomized to a daily intake of 2.3 g ω3 FA or placebo for 6 months; subsequently all received the ω3 FA preparation for the next 6 months. Baseline as well as changes in plasma levels of the main ω3 FAs in 165 patients, while receiving ω3 FA supplementation for 6 months, were analyzed for association to cognitive performance (assessed by ADAS-cog and MMSE scores) as well as to gender.RESULTS: Preservation of cognitive functioning, assessed by ADAS-cog or its sub-items (but not MMSE) scores, was significantly associated to increasing plasma ω3 FA levels over time. Thus, the higher ω3 FA plasma levels rose, the lower was the rate of cognitive deterioration. This effect was not related to gender; since although females displayed higher ω3 FA plasma levels than did males after 6 months of supplementation, this difference disappeared when adjusted for body weight.CONCLUSIONS: Since our study suggests dose-response relationships between plasma levels of ω3 FA and preservation of cognition, future ω3 FA trials in patients with mild AD should consider exploring graded (and body weight adjusted) doses of ω3 FA.
  •  
2.
  • Faxen-Irving, Gerd, et al. (författare)
  • Does Fatty Acid Composition in Subcutaneous Adipose Tissue Differ between Patients with Alzheimer's Disease and Cohabiting Proxies?
  • 2018
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 61:2, s. 515-519
  • Tidskriftsartikel (refereegranskat)abstract
    • Low tissue levels of the major marine ω3 fatty acids (FAs) DHA and EPA are found in Alzheimer's disease (AD). We investigated if healthy proxies to AD patients have higher levels of these ω3 FAs. We observed lower levels of EPA and DHA in subcutaneous adipose tissue biopsies from 64 AD patients compared with 16 cognitively healthy proxies. No significant difference was observed when pairwise comparisons were made between a subset of 16 AD patients and their co-habiting proxies. Larger studies are needed to replicate these findings and to determine if they could depend on FA intake or differences in metabolism.
  •  
3.
  • Jernerén, Fredrik, et al. (författare)
  • Homocysteine Status Modifies the Treatment Effect of Omega-3 Fatty Acids on Cognition in a Randomized Clinical Trial in Mild to Moderate Alzheimer's Disease : The OmegAD Study
  • 2019
  • Ingår i: Journal of Alzheimer's Disease. - : IOS Press. - 1387-2877 .- 1875-8908. ; 69:1, s. 189-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Trials of supplementation with omega-3 fatty acids (omega 3-FAs) in patients with mild cognitive impairment or Alzheimer's disease (AD) have produced inconsistent effects on cognitive decline. There is evidence of an interaction between B vitamin status and omega 3-FAs in relation to brain atrophy and cognitive decline.Objective: We investigated whether baseline levels of plasma total homocysteine (tHcy), a marker of B vitamin status, modify the effects of omega 3-FAs supplementation on cognitive performance in moderate AD.Methods: This post hoc analysis of the OmegAD trial included 171 community-based patients with AD (MMSE >= 15): 88 patients received daily doses of 1.7 g docosahexaenoic acid and 0.6 g eicosapentaenoic acid for 6 months. Treatment outcome on cognition was analyzed according to baseline levels of tHcy using a general linear model and ANCOVA.Results: We found significant interactions between omega 3-FA supplementation and tHcy on cognition and clinical stage assessed by MMSE (p = 0.040), global CDR (p = 0.059), and CDRsob (p = 0.023), but not on ADAS-cog (p = 0.649). In patients with tHcy levels <11.7 mu mol/L, omega 3-FA supplementation improved cognitive performance as measured by MMSE (+7.1%, 95% CI: 0.59 to 13.7%, p = 0.033) and clinical status as measured by CDRsob (-22.3%, 95% CI: -5.8 to -38.7%, p = 0.009) compared with placebo.Conclusion: The effect of omega 3-FA supplementation on MMSE and CDR appears to be influenced by baseline tHcy, suggesting that adequate B vitamin status is required to obtain beneficial effects of omega 3-FA on cognition.
  •  
4.
  • Karimi, Mohsen, et al. (författare)
  • DHA-rich n-3 fatty acid supplementation decreases DNA methylation in blood leukocytes : the OmegAD study
  • 2017
  • Ingår i: American Journal of Clinical Nutrition. - : HighWire Press. - 0002-9165 .- 1938-3207. ; 106:4, s. 1157-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Dietary fish oils, rich in long-chain n-3 (ω-3) fatty acids (FAs) [e.g., docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3)], modulate inflammatory reactions through various mechanisms, including gene expression, which is measured as messenger RNA concentration. However, the effects of long-term treatment of humans with DHA and EPA on various epigenetic factors-such as DNA methylation, which controls messenger RNA generation-are poorly described.Objective: We wanted to determine the effects of 6 mo of dietary supplementation with an n-3 FA preparation rich in DHA on global DNA methylation of peripheral blood leukocytes (PBLs) and the relation to plasma EPA and DHA concentrations in Alzheimer disease (AD) patients.Design: In the present study, DNA methylation in four 5'-cytosine-phosphate-guanine-3' (CpG) sites of long interspersed nuclear element-1 repetitive sequences was assessed in a group of 63 patients (30 given the n-3 FA preparation and 33 given placebo) as an estimation of the global DNA methylation in blood cells. Patients originated from the randomized, double-blind, placebo-controlled OmegAD study, in which 174 AD patients received either 1.7 g DHA and 0.6 g EPA (the n-3 FA group) or placebo daily for 6 mo.Results: At 6 mo, the n-3 FA group displayed marked increases in DHA and EPA plasma concentrations (2.6- and 3.5-fold), as well as decreased methylation in 2 out of 4 CpG sites (P < 0.05 for all), respectively. This hypomethylation in CpG2 and CpG4 sites showed a reverse correlation to changes in plasma EPA concentration (r = -0.25, P = 0.045; and r = -0.26, P = 0.041, respectively), but not to changes in plasma DHA concentration, and were not related to apolipoprotein E-4 allele frequency.Conclusion: Supplementation with n-3 FA for 6 mo was associated with global DNA hypomethylation in PBLs. Our data may be of importance in measuring various effects of marine oils, including gene expression, in patients with AD and in other patients taking n-3 FA supplements. This trial was registered at clinicaltrials.gov as NCT00211159.
  •  
5.
  • Stenström, Patrik, et al. (författare)
  • Synthesis and in Vitro Evaluation of Monodisperse Amino-Functional Polyester Dendrimers with Rapid Degradability and Antibacterial Properties
  • 2017
  • Ingår i: Biomacromolecules. - : American Chemical Society (ACS). - 1525-7797 .- 1526-4602. ; 18:12, s. 4323-4330
  • Tidskriftsartikel (refereegranskat)abstract
    • Amine functional polymers, especially cationically charged, are interesting biomacromolecules for several reasons, including easy cell membrane entrance, their ability to escape endosomes through the proton sponge effect, spontaneous complexation and delivery of drugs and siRNA, and simple functionalization in aqueous solutions. Dendrimers, a subclass of precision polymers, are monodisperse and exhibit a large and exact number of peripheral end groups in relation to their size and have shown promise in drug delivery, biomedical imaging and as antiviral agents. In this work, hydroxyl functional dendrimers of generation 1 to 5 based on 2,2-bis(methylol)propionic acid (bis-MPA) were modified to bear 6 to 96 peripheral amino groups through esterification reactions with beta-alanine. All dendrimers were isolated in high yields and with remarkable monodispersity. This was successfully accomplished utilizing the present advantages of fluoride-promoted esterification (FPE) with imidazole-activated monomers. Straightforward postfunctionalization was conducted on a second generation amino functional dendrimer with tetraethylene glycol through NHS-amidation and carbonyl diimidazole (CDI) activation to full conversion with short reaction times. Fast biodegradation of the dendrimers through loss of peripheral beta-alanine groups was observed and generational- and dose-dependent cytotoxicity was evaluated with a set of cell lines. An increase. in neurotoxicity compared to hydroxyl-functional dendrimers was shown in neuronal cells, however, the dendrimers were slightly less neurotoxic than commercially available poly(amidoamine) dendrimers (PAMAMs). Additionally, their effect on bacteria was evaluated and the second generation dendrimer was found unique inhibiting the growth of Escherichia coli at physiological conditions while being nontoxic toward human cells. Finally, these results cement a robust and sustainable synthetic route to amino-functional polyester dendrimers with interesting chemical and biological properties.
  •  
6.
  • Wang, Xiuzhe, et al. (författare)
  • Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells : the OmegAD study
  • 2015
  • Ingår i: Journal of Lipid Research. - : American Society for Biochemistry and Molecular Biology. - 0022-2275 .- 1539-7262. ; 56:3, s. 674-681
  • Tidskriftsartikel (refereegranskat)abstract
    • Specialized proresolving mediators (SPMs) induce resolution of inflammation. SPMs are derivatives of n-3 and n-6 PUFAs and may mediate their beneficial effects. It is unknown whether supplementation with PUFAs influences the production of SPMs. Alzheimer's disease (AD) is associated with brain inflammation and reduced levels of SPMs. The OmegAD study is a randomized, double-blind, and placebo-controlled clinical trial on AD patients, in which placebo or a supplement of 1.7 g DHA and 0.6 g EPA was taken daily for 6 months. Plasma levels of arachidonic acid decreased, and DHA and EPA levels increased after 6 months of n-3 FA treatment. Peripheral blood mononuclear cells (PBMCs) were obtained before and after the trial. Analysis of the culture medium of PBMCs incubated with amyloid-β 1-40 showed unchanged levels of the SPMs lipoxin A4 and resolvin D1 in the group supplemented with n-3 FAs, whereas a decrease was seen in the placebo group. The changes in SPMs showed correspondence to cognitive changes. Changes in the levels of SPMs were positively correlated to changes in transthyretin. We conclude that supplementation with n-3 PUFAs for 6 months prevented a reduction in SPMs released from PBMCs of AD patients, which was associated with changes in cognitive function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy