SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schulze Steve) srt2:(2020)"

Sökning: WFRF:(Schulze Steve) > (2020)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ho, Anna Y. Q., et al. (författare)
  • SN 2020bvc : A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present optical, radio, and X-ray observations of SN 2020bvc (=ASASSN-20bs, ZTF 20aalxlis), a nearby (z = 0.0252; d.=.114Mpc) broad-line (BL) Type Ic supernova (SN) and the first double-peaked Ic-BL discovered without a gamma-ray burst (GRB) trigger. Our observations show that SN 2020bvc shares several properties in common with the Ic-BL SN 2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio luminosity (L-radio approximate to 10(37) erg s(-1)) is brighter than ordinary core-collapse SNe but fainter than LLGRB SNe such as SN 1998bw (associated with LLGRB 980425). We model our VLA observations (spanning 13-43 days) as synchrotron emission from a mildly relativistic (v greater than or similar to 0.3c) forward shock. Second, with Swift and Chandra, we detect X-ray emission (L-X approximate to 10(41) erg s(-1)) that is not naturally explained as inverse Compton emission or part of the same synchrotron spectrum as the radio emission. Third, high-cadence (6x night(-1)) data from the Zwicky Transient Facility (ZTF) show a double-peaked optical light curve, the first peak from shock cooling of extended low-mass material (mass M-e < 10(-2) M-circle dot at radius R-e > 10(12) cm) and the second peak from the radioactive decay of 56Ni. SN 2020bvc is the first double-peaked Ic-BL SN discovered without a GRB trigger, so it is noteworthy that it shows X-ray and radio emission similar to LLGRB SNe. For four of the five other nearby (z less than or similar to 0.05) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN 2006aj and SN 2020bvc, i.e., that lasts approximate to 1 day.and reaches a peak luminosity M approximate to -18. Follow-up X-ray and radio observations of Ic-BL SNe with well-sampled early optical light curves will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.
  •  
2.
  • Horesh, Assaf, et al. (författare)
  • A Non-equipartition Shock Wave Traveling in a Dense Circumstellar Environment around SN 2020oi
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 903:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the discovery and panchromatic follow-up observations of the young Type Ic supernova (SN Ic) SN 2020oi in M100, a grand-design spiral galaxy at a mere distance of 14 Mpc. We followed up with observations at radio, X-ray, and optical wavelengths from only a few days to several months after explosion. The optical behavior of the supernova is similar to those of other normal SNe Ic. The event was not detected in the X-ray band but our radio observations revealed a bright mJy source (L-nu approximate to 1.2 x 10(27) erg s(-1) Hz(-1)). Given the relatively small number of stripped envelope SNe for which radio emission is detectable, we used this opportunity to perform a detailed analysis of the comprehensive radio data set we obtained. The radio-emitting electrons initially experience a phase of inverse Compton cooling, which leads to steepening of the spectral index of the radio emission. Our analysis of the cooling frequency points to a large deviation from equipartition at the level of epsilon(e)/epsilon(B) greater than or similar to 200, similar to a few other cases of stripped envelope SNe. Our modeling of the radio data suggests that the shock wave driven by the SN ejecta into the circumstellar matter (CSM) is moving at similar to 3 x 10(4) km s(-1). Assuming a constant mass loss from the stellar progenitor, we find that the mass-loss rate is (M)over dot approximate to 1.4 x 10(-4) M-circle dot yr(-1) for an assumed wind velocity of 1000 km s(-1). The temporal evolution of the radio emission suggests a radial CSM density structure steeper than the standard r(-2).
  •  
3.
  • Nyholm, Anders, 1985-, et al. (författare)
  • Type IIn supernova light-curve properties measured from an untargeted survey sample
  • 2020
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 637
  • Tidskriftsartikel (refereegranskat)abstract
    • The evolution of a Type IIn supernova (SN IIn) is governed by the interaction between the SN ejecta and a hydrogen-rich circumstellar medium. The SNe IIn thus allow us to probe the late-time mass-loss history of their progenitor stars. We present a sample of SNe IIn from the untargeted, magnitude-limited surveys of the Palomar Transient Factory (PTF) and its successor, the intermediate PTF (iPTF). To date, statistics on SN IIn optical light-curve properties have generally been based on small (≲ 10 SNe) samples from targeted SN surveys. The SNe IIn found and followed by the PTF/iPTF were used to select a sample of 42 events with useful constraints on the rise times as well as with available post-peak photometry. The sample SNe were discovered in 2009-2016 and have at least one low-resolution classification spectrum, as well as photometry from the P48 and P60 telescopes at Palomar Observatory. We study the light-curve properties of these SNe IIn using spline fits (for the peak and the declining portion) and template matching (for the rising portion). We study the peak-magnitude distribution, rise times, decline rates, colour evolution, host galaxies, and K-corrections of the SNe in our sample. We find that the typical rise times are divided into fast and slow risers at 20±6 d and 50±11 d, respectively. The decline rates are possibly divided into two clusters (with slopes 0.013 ± 0.006 mag d^-1 and 0.040±0.010 mag d^-1), but this division has weak statistical significance. We find no significant correlation between the peak luminosity of SNe IIn and their rise times, but the more luminous SNe IIn are generally found to be more long-lasting. Slowly rising SNe IIn are generally found to decline slowly. The SNe in our sample were hosted by galaxies of absolute magnitude -22 ≲ M_g ≲ -13 mag. The K-corrections at light-curve peak of the SNe IIn in our sample are found to be within 0.2 mag for the observer's frame r-band, for SNe at redshifts z < 0.25. By applying K-corrections and also including ostensibly "superluminous" SNe IIn, we find that the peak magnitudes are M_peak^r = -19.18±1.32 mag. We conclude that the occurrence of conspicuous light-curve bumps in SNe IIn, such as in iPTF13z, are limited to 1.4+14.6−1.0 % of the SNe IIn. We also investigate a possible sub-type of SNe IIn with a fast rise to a ≳ 50 d plateau followed by a slow, linear decline.
  •  
4.
  • Perley, Daniel A., et al. (författare)
  • The Zwicky Transient Facility Bright Transient Survey. II. A Public Statistical Sample for Exploring Supernova Demographics
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 904:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a public catalog of transients from the Zwicky Transient Facility (ZTF) Bright Transient Survey, a magnitude-limited (m g or r filter) survey for extragalactic transients in the ZTF public stream. We introduce cuts on survey coverage, sky visibility around peak light, and other properties unconnected to the nature of the transient, and show that the resulting statistical sample is spectroscopically 97% complete at <18 mag, 93% complete at <18.5 mag, and 75% complete at <19 mag. We summarize the fundamental properties of this population, identifying distinct duration-luminosity correlations in a variety of supernova (SN) classes and associating the majority of fast optical transients with well-established spectroscopic SN types (primarily SN Ibn and II/IIb). We measure the Type Ia SN and core-collapse (CC) SN rates and luminosity functions, which show good consistency with recent work. About 7% of CC SNe explode in very low-luminosity galaxies (M-i > -16 mag), 10% in red-sequence galaxies, and 1% in massive ellipticals. We find no significant difference in the luminosity or color distributions between the host galaxies of SNe Type II and SNe Type Ib/c, suggesting that line-driven wind stripping does not play a major role in the loss of the hydrogen envelope from their progenitors. Future large-scale classification efforts with ZTF and other wide-area surveys will provide high-quality measurements of the rates, properties, and environments of all known types of optical transients and limits on the existence of theoretically predicted but as yet unobserved explosions.
  •  
5.
  • Soumagnac, Maayane T., et al. (författare)
  • Early Ultraviolet Observations of Type IIn Supernovae Constrain the Asphericity of Their Circumstellar Material
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 899:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a survey of the early evolution of 12 Type IIn supernovae (SNe IIn) at ultraviolet and visible light wavelengths. We use this survey to constrain the geometry of the circumstellar material (CSM) surrounding SN IIn explosions, which may shed light on their progenitor diversity. In order to distinguish between aspherical and spherical CSM, we estimate the blackbody radius temporal evolution of the SNe IIn of our sample, following the method introduced by Soumagnac et al. We find that higher-luminosity objects tend to show evidence for aspherical CSM. Depending on whether this correlation is due to physical reasons or to some selection bias, we derive a lower limit between 35% and 66% for the fraction of SNe IIn showing evidence for aspherical CSM. This result suggests that asphericity of the CSM surrounding SNe IIn is common-consistent with data from resolved images of stars undergoing considerable mass loss. It should be taken into account for more realistic modeling of these events.
  •  
6.
  • Soumagnac, Maayane T., et al. (författare)
  • SN 2018fif : The Explosion of a Large Red Supergiant Discovered in Its Infancy by the Zwicky Transient Facility
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 902:1
  • Tidskriftsartikel (refereegranskat)abstract
    • High-cadence transient surveys are able to capture supernovae closer to their first light than ever before. Applying analytical models to such early emission, we can constrain the progenitor stars' properties. In this paper, we present observations of SN 2018fif (ZTF 18abokyfk). The supernova was discovered close to first light and monitored by the Zwicky Transient Facility (ZTF) and the Neil Gehrels Swift Observatory. Early spectroscopic observations suggest that the progenitor of SN 2018fif was surrounded by relatively small amounts of circumstellar material compared to all previous cases. This particularity, coupled with the high-cadence multiple-band coverage, makes it a good candidate to investigate using shock-cooling models. We employ the SOPRANOS code, an implementation of the model by Sapir & Waxman and its extension to early times by Morag et al. Compared with previous implementations, SOPRANOS has the advantage of including a careful account of the limited temporal validity domain of the shock-cooling model as well as allowing usage of the entirety of the early UV data. We find that the progenitor of SN 2018fif was a large red supergiant with a radius of R = 744.0(-128.0)(+183.0) R-circle dot and an ejected mass of M-ej = 9.3(-5.8)(+0.4) M-circle dot. Our model also gives information on the explosion epoch, the progenitor's inner structure, the shock velocity, and the extinction. The distribution of radii is double-peaked, with smaller radii corresponding to lower values of the extinction, earlier recombination times, and a better match to the early UV data. If these correlations persist in future objects, denser spectroscopic monitoring constraining the time of recombination, as well as accurate UV observations (e.g., with ULTRASAT), will help break the extinction/radius degeneracy and independently determine both.
  •  
7.
  • Yao, Yuhan, et al. (författare)
  • SN2019dge : A Helium-rich Ultra-stripped Envelope Supernova
  • 2020
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 900:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of ZTF18abfcmjw (SN2019dge), a helium-rich supernova with a fast-evolving light curve indicating an extremely low ejecta mass (approximate to 0.33M(circle dot)) and low kinetic energy (approximate to 1.3 x 10(50)erg). Early-time (<4 days after explosion) photometry reveals evidence of shock cooling from an extended helium-rich envelope of similar to 0.1 M-circle dot located similar to 1.2 x 10(13) cm from the progenitor. Early-time He II line emission and subsequent spectra show signatures of interaction with helium-rich circumstellar material, which extends from greater than or similar to 5 x 10(13)cm to greater than or similar to 2 x 10(16)cm. We interpret SN2019dge as a helium-rich supernova from an ultra-stripped progenitor, which originates from a close binary system consisting of a mass-losing helium star and a low-mass main-sequence star or a compact object (i.e., a white dwarf, a neutron star, or a black hole). We infer that the local volumetric birth rate of 19dge-like ultra-stripped SNe is in the range of 1400-8200 Gpc(-3)yr(-1) (i.e., 2%-12% of core-collapse supernova rate). This can be compared to the observed coalescence rate of compact neutron star binaries that are not formed by dynamical capture.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy