SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schurtenberger Peter) srt2:(2010-2014)"

Sökning: WFRF:(Schurtenberger Peter) > (2010-2014)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gibaud, Thomas, et al. (författare)
  • New routes to food gels and glasses
  • 2012
  • Ingår i: Faraday Discussions. - : Royal Society of Chemistry (RSC). - 1364-5498 .- 1359-6640. ; 158, s. 267-284
  • Tidskriftsartikel (refereegranskat)abstract
    • We describe the possibility to create solid-like protein samples whose structural and mechanical properties can be varied and tailored over an extremely large range in a very controlled way through an arrested spinodal decomposition process. We use aqueous lysozyme solutions as a model globular protein system. A combination of video microscopy, small-angle neutron and X-ray scattering and reverse Monte Carlo modeling is used to characterize the structure of the bicontinuous network with two coexisting phases of a dilute protein solution and a glassy or arrested dense protein backbone at all relevant length scales. Rheological measurements are then used to determine the complex mechanical response of these protein gels as a function of protein concentration and quench temperature. While in particular the origin of the dependence of the mechanical properties on quench depth and concentration is not well understood currently, it seems ultimately connected to the particular bicontinuous structure of the arrested spinodal network created by the interplay between the early stage of a spinodal decomposition and the position of the glass line. We then generalize this behavior and discuss how this could open up new routes to prepare gel-like food systems with adjustable structural and mechanical properties. We present results from a first feasibility study where we use a depletion interaction caused by the addition of small non-adsorbing polymers to suspensions of casein micelles in order to create food gels with tunable structural and mechanical properties through an arrested spinodal decomposition process.
  •  
2.
  • Voets, Ilja K., et al. (författare)
  • DMSO-Induced Denaturation of Hen Egg White Lysozyme
  • 2010
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 114:36, s. 11875-11883
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Aben, Simon, et al. (författare)
  • Rheological Investigations on the Creaming of Depletion-Flocculated Emulsions
  • 2012
  • Ingår i: Langmuir. - : American Chemical Society (ACS). - 0743-7463 .- 1520-5827. ; 28:21, s. 7967-7975
  • Tidskriftsartikel (refereegranskat)abstract
    • Preventing creaming or sedimentation by the addition of thickeners is an important industrial challenge. We study the effect of the addition of a "free" nonadsorbing polymer (xanthan gum) on the stability against creaming of sterically stabilized O/W emulsions. Therefore, we analyze our samples using microscopy and rheological measurements. At low xanthan concentrations, the emulsions cream. However, above a certain concentration a three-dimensional network of droplets is formed, which can prevent creaming. We attribute the formation of this structure to depletion attraction. The rheological behavior of an emulsion that is macroscopically stable should be elastic, while it should be viscous for a creaming emulsion. In order to distinguish between stable and unstable samples, we measure their relaxation time by mechanical rheology and find a good correlation to the visual observation. However, the measured relaxation times are much shorter than the time-scales, on which we observe creaming. We hypothesize that the measured relaxation time is related to the droplet-droplet interaction. This determines the frequency at which microscopic rearrangements occur, which weaken the network structure prior to creaming. Based on this interpretation, the relaxation time gives direct access to the microstructural processes involved in creaming. We therefore suggest using it as a predictive parameter of creaming stability.
  •  
4.
  • Balog, Sandor, et al. (författare)
  • Dynamic Depolarized Light Scattering of Small Round Plasmonic Nanoparticles: When Imperfection is Only Perfect
  • 2014
  • Ingår i: Journal of Physical Chemistry C. - : American Chemical Society (ACS). - 1932-7447 .- 1932-7455. ; 118:31, s. 17968-17974
  • Tidskriftsartikel (refereegranskat)abstract
    • Although small round gold nanoparticles (Au NPs) possess only a small degree of shape anisotropy, they support localized surface plasmon resonances and exhibit intrinsic optical anisotropy. These inherent features promote depolarized light scattering, whose temporal fluctuations carry information about rotational Brownian dynamics, and thus can be used to describe the size distribution of round Au NPs. We demonstrate that this allows for a much more accurate determination of particle size and polydispersity through depolarized dynamic light scattering when compared to standard particle sizing with light scattering.
  •  
5.
  • Cardinaux, Frederic, et al. (författare)
  • Cluster-Driven Dynamical Arrest in Concentrated Lysozyme Solutions
  • 2011
  • Ingår i: The Journal of Physical Chemistry Part B. - : American Chemical Society (ACS). - 1520-5207 .- 1520-6106. ; 115:22, s. 7227-7237
  • Tidskriftsartikel (refereegranskat)abstract
    • We present a detailed experimental and numerical study of the structural and dynamical properties of salt-free lysozyme solutions. In particular, by combining small-angle X-ray scattering (SAXS) data with neutron spin echo (NSE) and rheology experiments, we are able to identify that an arrest transition takes place at intermediate densities, driven by the slowing down of the cluster motion. Using an effective pair potential among proteins, based on the combination of short-range attraction and long-range repulsion, we account remarkably well for the peculiar volume fraction dependence of the effective structure factor measured by SAXS. We show that a transition from a monomer to a cluster-dominated fluid happens at volume fractions larger than phi greater than or similar to 0.05 where the close agreement between NSE measurements and Brownian dynamics simulations confirms the transient nature of the clusters. Clusters even stay transient above the geometric percolation found in simulation at phi > 0.15, though NSE reveals a cluster lifetime that becomes increasingly large and indicates a divergence of the diffusivity at phi greater than or similar to 0.26. Macroscopic measurements of the viscosity confirm this transition where the long-lived-nature of the clusters is at the origin of the simultaneous dynamical arrest at all length scales.
  •  
6.
  • Crassous, Jerome, et al. (författare)
  • Advanced multiresponsive comploids: from design to possible applications.
  • 2014
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3372 .- 2040-3364. ; 6:15, s. 8726-8735
  • Tidskriftsartikel (refereegranskat)abstract
    • We extend the commonly used synthesis strategies for responsive microgels to the design of novel multiresponsive and multifunctional nanoparticles that combine inorganic magnetic, metallic/catalytic and thermoresponsive organic moieties. Magnetic responsiveness is implemented through the integration of silica-coated maghemite nanoparticles into fluorescently labeled crosslinked poly(N-isopropylmethacrylamide) microgels. These particles are then employed as templates for the in situ reduction of catalytically active gold nanoparticles. In order to tune the reactivity of the catalyst through a thermally controlled barrier, an additional layer of crosslinked poly(N-isopropylacrylamide) is added in the final step. We subsequently demonstrate that these particles can be employed as smart catalysts. We show that the thermoresponsive nature of the outer particle shell not only provides control over the catalytic activity, but when combined with a magnetic core allows for very efficient removal of the catalytic system through temperature-controlled reversible coagulation and subsequent magnetophoresis in an applied magnetic field gradient. We finally discuss the use of this design principle for the synthesis of complex hybrid particles for various applications that would all profit from their multiresponsive and multifunctional nature.
  •  
7.
  • Crassous, Jerome, et al. (författare)
  • Field-induced assembly of colloidal ellipsoids into well-defined microtubules.
  • 2014
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Current theoretical attempts to understand the reversible formation of stable microtubules and virus shells are generally based on shape-specific building blocks or monomers, where the local curvature of the resulting structure is explicitly built-in via the monomer geometry. Here we demonstrate that even simple ellipsoidal colloids can reversibly self-assemble into regular tubular structures when subjected to an alternating electric field. Supported by model calculations, we discuss the combined effects of anisotropic shape and field-induced dipolar interactions on the reversible formation of self-assembled structures. Our observations show that the formation of tubular structures through self-assembly requires much less geometrical and interaction specificity than previously thought, and advance our current understanding of the minimal requirements for self-assembly into regular virus-like structures.
  •  
8.
  • Crassous, Jerome, et al. (författare)
  • Giant hollow fiber formation through self-assembly of oppositely charged polyelectrolyte brushes and gold nanoparticles
  • 2013
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 9:38, s. 9111-9118
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the use of binary mixtures of oppositely charged gold nanoparticles (AuNPs) and spherical polyelectrolyte brushes (SPBs), consisting of a polystyrene core onto which long polystyrene sulfonate chains are grafted, as a simple model system to investigate the influence of directional interactions on self-assembly. We demonstrate that the mixing ratio, i.e., the number of AuNPs per SPB, has a profound influence on self-assembly. In particular we report on the formation of giant hollow fibers, and present a thorough characterization of these nanostructures. We speculate that the adsorption of a few AuNPs on the SPBs appears to direct the tubular self-assembly, and discuss the analogy to the case of modified proteins such as tubulin under the action of nucleotides.
  •  
9.
  • Crassous, Jerome J., et al. (författare)
  • Asymmetric self-assembly of oppositely charged composite microgels and gold nanoparticles
  • 2012
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 8:5, s. 1648-1656
  • Tidskriftsartikel (refereegranskat)abstract
    • The electrostatically driven self-assembly of oppositely charged gold nanoparticles (Au NPs) and polystyrene/poly(N-isopropylacrylamide) (PS/PNIPAm) core-shell microgels (CSMs) has been investigated. The co-assembly was accomplished by addition of smaller Au NPs to CSMs in dilute conditions up to a number ratio of about 1 : 1, when the suspension is destabilized. A combination of different techniques (i.e. turbidimetric titration, electrophoretic mobility, UV-visible spectroscopy, dynamic light scattering and microscopy techniques) were used to investigate the association between the two particles and the stability of the different mixtures. Hereby we demonstrate that the size ratio between the two particles (about 4 to 1) and the asymmetric character of the association result in the formation of electrostatic hybrid complexes, analogous to dipolar colloidal molecules, which further rearrange into finite sized clusters for number ratios N(AuNPs)/N(CSMs) < 1.
  •  
10.
  • Crassous, Jerome, et al. (författare)
  • Preparation and characterization of ellipsoidal-shaped thermosensitive microgel colloids with tailored aspect ratios
  • 2012
  • Ingår i: Soft Matter. - : Royal Society of Chemistry (RSC). - 1744-6848 .- 1744-683X. ; 8:13, s. 3538-3548
  • Tidskriftsartikel (refereegranskat)abstract
    • Prolate model colloids with defined properties can be obtained by the stretching of spherical polymeric particles, which is well-known for polystyrene and poly(methyl methacrylate) latices. The present study aims to extend this approach to functional core-shell particles in order to achieve a new class of anisotropic colloidal materials where both the aspect ratio and the effective volume fraction can be controlled by temperature. We describe the synthesis and characterization of these functional anisotropic core-shell particles consisting of a polystyrene (PS) core onto which a crosslinked thermoresponsive microgel shell of poly(N-isopropylmethacrylamide) (PNIPMAm) was grafted. Embedded into a film of polyvinylalcohol (PVA), the spherical composite microgels are heated above the glass transition temperature (T-g) of the polystyrene core and then stretched with different deformations g. During the stretching, the particles adopt an elongated shape, that they retain after cooling to room temperature as confirmed by small-angle X-ray scattering performed on the films. Anisotropic composite microgels with aspect ratios ranging from 2.2 to 6.5 are recovered after dissolution of the PVA and purification, and are fully characterized by diverse methods such as transmission electron microscopy, confocal microscopy and light scattering. The temperature sensitivity of these anisotropic composite microgels is maintained as confirmed by dynamic light scattering and cryogenic electron microscopy performed below and above the volume phase transition of the shell.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy