SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schwartzkopf Matthias) srt2:(2015-2019)"

Sökning: WFRF:(Schwartzkopf Matthias) > (2015-2019)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Xia, Senlin, et al. (författare)
  • Magnetic nanoparticle-containing soft-hard diblock copolymer films with high order
  • 2018
  • Ingår i: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 10:25, s. 11930-11941
  • Tidskriftsartikel (refereegranskat)abstract
    • For sensor applications, superparamagnetic anisotropy is an indispensable property, which is typically achieved by employing an external field to guide the arrangement of magnetic nanoparticles (NPs). In the present investigation, the diblock copolymer polystyrene-block-poly(N-isopropylacrylamide) (PS-b-PNIPAM) is printed as a template to localize magnetic iron oxide NPs without any external field. Via microphase separation, cylindrical nanostructures of PS in a PNIPAM matrix are obtained, aligned perpendicular to the substrate. Since the magnetite NPs (Fe3O4) are functionalized with hydrophobic organic chains showing affinity to the PS blocks, they can selectively aggregate inside the PS cylinders. Moreover, solvent vapor annealing allows the achievement of nanostructures inside the hybrid system with a very high order, even at a high NP loading. Therefore, NPs can accumulate within PS domains to form perpendicularly aligned aggregates with high periodicity. The magnetic properties of the hybrid films are determined at various temperatures in two orthogonal directions (with PS cylinders vertical and parallel to the applied magnetic field). All hybrid films show superparamagnetism and a remarkable magnetic anisotropy is achieved at certain NP concentrations. This investigation shows a facile route to prepare superparamagnetic films with magnetic anisotropy and offers a novel possibility to future magnetic sensor fabrication.
  •  
2.
  • Xia, Senlin, et al. (författare)
  • Printed Thin Diblock Copolymer Films with Dense Magnetic Nanostructure
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:24, s. 21935-21945
  • Tidskriftsartikel (refereegranskat)abstract
    • Thin hybrid films with dense magnetic structures for sensor applications are printed using diblock copolymer (DBC) templating magnetic nanoparticles (MNPs). To achieve a high-density magnetic structure, the printing ink is prepared by mixing polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) with a large PS volume fraction and PS selective MNPs. Solvent vapor annealing is applied to generate a parallel cylindrical film morphology (with respect to the substrate), in which the MNP-residing PS domains are well separated by the PMMA matrix, and thus, the formation of large MNP agglomerates is avoided. Moreover, the morphologies of the printed thin films are determined as a function of the MNP concentration with real and reciprocal space characterization techniques. The PS domains are found to be saturated with MNPs at 1 wt %, at which the structural order of the hybrid films reaches a maximum within the studied range of MNP concentration. As a beneficial aspect, the MNP loading improves the morphological order of the thin DBC films. The dense magnetic structure endows the thin films with a faster superparamagnetic responsive behavior, as compared to thick films where identical MNPs are used, but dispersed inside the minority domains of the DBC.
  •  
3.
  • Xia, Senlin, et al. (författare)
  • Spray-Coating Magnetic Thin Hybrid Films of PS-b-PNIPAM and Magnetite Nanoparticles
  • 2019
  • Ingår i: Advanced Functional Materials. - : WILEY-V C H VERLAG GMBH. - 1616-301X .- 1616-3028. ; 29:15
  • Tidskriftsartikel (refereegranskat)abstract
    • Spray coating is employed to fabricate magnetic thin films composed of the diblock copolymer polystyrene-block-poly(N-isopropylacrylamide) and Fe3O4 magnetic nanoparticles (MNPs) functionalized with hydrophobic coatings. The kinetics of structure formation of the hybrid films is followed in situ with grazing incidence small angle X-ray scattering during the spray deposition. To gain a better understanding of the influence of MNPs on the overall structure formation, the pure polymer film is also deposited as a reference via an identical spray protocol. At the initial spraying stage, the hybrid film (containing 2 wt% of MNPs) exhibits a faster formation process of a complete film as compared to the reference. The existence of MNPs depresses the dewetting behavior of polymer films on the substrate at macroscale and simultaneously alters the polymer microphase separation structure orientation from parallel to vertical. As spraying proceeds, MNPs aggregate into agglomerates with increasing sizes. After the spray deposition is finished, both samples gradually reach an equilibrium state and magnetic films with stable structures are achieved in the end. Superconducting quantum interference device investigation reveals the superparamagnetic property of the sprayed hybrid film. Consequently, potential application of sprayed films in fields such as magnetic sensors or data storage appears highly promising.
  •  
4.
  • Gensch, Marc, et al. (författare)
  • Correlating Nanostructure, Optical and Electronic Properties of Nanogranular Silver Layers during Polymer-Template-Assisted Sputter Deposition
  • 2019
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 11:32, s. 29416-29426
  • Tidskriftsartikel (refereegranskat)abstract
    • Tailoring the optical and electronic properties of nanostructured polymer-metal composites demonstrates great potential for efficient fabrication of modern organic optical and electronic devices such as flexible sensors, transistors, diodes, or photovoltaics. Self-assembled polymer metal nanocomposites offer an excellent perspective for creating hierarchical nanostructures on macroscopic scales by simple bottom-up processes. We investigate the growth processes of nanogranular silver (Ag) layers on diblock copolymer thin film templates during sputter deposition. The Ag growth is strongly driven by self-assembly and selective wetting on the lamella structure of polystyrene-block-poly (methyl methacrylate). We correlate the emerging nanoscale morphologies with collective optical and electronic properties and quantify the difference in Ag growth on the corresponding homopolymer thin films. Thus, we are able to determine the influence of the respective polymer template and observe substrate effects on the Ag cluster percolation threshold, which affects the insulator-to-metal transition (IMT). Optical spectroscopy in the UV-vis regime reveals localized surface plasmon resonance for the metal polymer composite. Their maximum absorption is observed around the IMT due to the subsequent long-range electron conduction in percolated nanogranular Ag layers. Using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, we identify the oxidation of Ag at the acrylate side chains as an essential influencing factor driving the selective wetting behavior in the early growth stages. The results of polymer-templated cluster growth are corroborated by atomic force microscopy and field emission scanning electron microscopy.
  •  
5.
  • Glier, Tomke E., et al. (författare)
  • Functional Printing of Conductive Silver-Nanowire Photopolymer Composites
  • 2019
  • Ingår i: Scientific Reports. - : NATURE PUBLISHING GROUP. - 2045-2322. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated the fabrication and functional behaviour of conductive silver-nanowire-polymer composites for prospective use in printing applications. Silver-nanowires with an aspect ratio of up to 1000 were synthesized using the polyol route and embedded in a UV-curable and printable polymer matrix. Sheet resistances in the composites down to 13 Omega/sq at an optical transmission of about 90% were accomplished. The silver-nanowire composite morphology and network structure was investigated by electron microscopy, atomic force microscopy, profilometry, ellipsometry as well as surface sensitive X-ray scattering. By implementing different printing applications, we demonstrate that our silver nanowires can be used in different polymer composites. On the one hand, we used a tough composite for a 2D-printed film as top contact on a solar cell. On the other hand, a flexible composite was applied for a 3D-printed flexible capacitor.
  •  
6.
  • Hohn, Nuri, et al. (författare)
  • Impact of Catalytic Additive on Spray Deposited and Nanoporous Titania in Films Observed via in Situ X-ray Scattering : Implications for hanced Photovoltaics
  • 2018
  • Ingår i: ACS Applied Nano Materials. - : American Chemical Society (ACS). - 2574-0970. ; 1:8, s. 4227-4235
  • Tidskriftsartikel (refereegranskat)abstract
    • With the aim of obtaining nanostructured titania thin films for the tential use in hybrid or dye sensitized solar cells, the amphiphilic block copolymer polystyrene-b-poly(ethylene oxide) is employed as a ructure directing template in combination with solgel chemistry. For sy upscaling, spraying is used as a deposition technique. In situ azing incidence small-angle X-ray scattering (GISAXS) measurements are rformed during spraying and show that most titania structures are ready formed within the solution prior to deposition. However, ructural rearrangement is enabled during the deposition period when all amounts of hydrochloric acid (HCl) are used as a catalytic ditive to the spray solution. This behavior is ascribed to an altering the reaction dynamics and phase separation in the presence of HCl, ich significantly improves the templating effect of the employed block copolymer. With HCl as an additive the final nanoscale rphologies exhibit smaller pore sizes and strongly enhanced order as mpared to thin films sprayed from solutions that do not contain HCl as antified with atomic force microscopy, scanning electron microscopy, d GISAXS.
  •  
7.
  • Kousal, Jaroslav, et al. (författare)
  • Magnetron-sputtered copper nanoparticles : lost in gas aggregation and found by in situ X-ray scattering
  • 2018
  • Ingår i: Nanoscale. - : ROYAL SOC CHEMISTRY. - 2040-3364 .- 2040-3372. ; 10:38, s. 18275-18281
  • Tidskriftsartikel (refereegranskat)abstract
    • Magnetron discharge in a cold buffer gas represents a liquid-free approach to the synthesis of metal nanoparticles (NPs) with tailored structure, chemical composition and size. Despite a large number of metal NPs that were successfully produced by this method, the knowledge of the mechanisms of their nucleation and growth in the discharge is still limited, mainly because of the lack of in situ experimental data. In this work, we present the results of in situ Small Angle X-ray Scattering measurements performed in the vicinity of a Cu magnetron target with Ar used as a buffer gas. Condensation of atomic metal vapours is found to occur mainly at several mm distance from the target plane. The NPs are found to be captured preferentially within a region circumscribed by the magnetron plasma ring. In this capture zone, the NPs grow to the size of 90 nm whereas smaller ones sized 10-20 nm may escape and constitute a NP beam. Time-resolved measurements of the discharge indicate that the electrostatic force acting on the charged NPs may be largely responsible for their capturing nearby the magnetron.
  •  
8.
  • Pandit, Pallavi, et al. (författare)
  • Structure-Function Correlations in Sputter Deposited Gold/Fluorocarbon Multilayers for Tuning Optical Response
  • 2019
  • Ingår i: Nanomaterials. - : MDPI. - 2079-4991. ; 9:9
  • Tidskriftsartikel (refereegranskat)abstract
    • A new strategy to nanoengineer gold/fluorocarbon multilayer (ML) nanostructures is reported. We have investigated the morphological changes occurring at the metal-polymer interface in ML structures with varying volume fraction of gold (Au) and the kinetic growth aspect of the microscale properties of nano-sized Au in plasma polymer fluorocarbon (PPFC). Investigations were carried out at various temperatures and annealing times by means of grazing incidence small-angle and wide-angle X-ray scattering (GISAXS and GIWAXS). We have fabricated a series of MLs with varying volume fraction (0.12, 0.27, 0.38) of Au and bilayer periodicity in ML structure. They show an interesting granular structure consisting of nearly spherical nanoparticles within the polymer layer. The nanoparticle (NP) morphology changes due to the collective effects of NPs diffusion within ensembles in the in-plane vicinity and interlayer with increasing temperature. The in-plane NPs size distinctly increases with increasing temperature. The NPs become more spherical, thus reducing the surface energy. Linear growth of NPs with temperature and time shows diffusion-controlled growth of NPs in the ML structure. The structural stability of the multilayer is controlled by the volume ratio of the metal in polymer. At room temperature, UV-Vis shows a blue shift of the plasmon peak from 560 nm in ML Au/PTFE_1 to 437 nm in Au/PTFE_3. We have identified the fabrication and postdeposition annealing conditions to limit the local surface plasmon resonance (LSPR) shift from Delta lambda(LSPR) = 180 nm (Au/PTFE_1) to Delta lambda(LSPR) = 67 nm (Au/PTFE_3 ML)) and their optical response over a wide visible wavelength range. A variation in the dielectric constant of the polymer in presence of varying Au inclusion is found to be a possible factor affecting the LSPR frequency. Our findings may provide insights in nanoengineering of ML structure that can be useful to systematically control the growth of NPs in polymer matrix.
  •  
9.
  • Paul, Neelima, et al. (författare)
  • Templating growth of gold nanostructures with a CdSe quantum dot array
  • 2015
  • Ingår i: Nanoscale. - : Royal Society of Chemistry (RSC). - 2040-3364 .- 2040-3372. ; 7:21, s. 9703-9714
  • Tidskriftsartikel (refereegranskat)abstract
    • In optoelectronic devices based on quantum dot arrays, thin nanolayers of gold are preferred as stable metal contacts and for connecting recombination centers. The optimal morphology requirements are uniform arrays with precisely controlled positions and sizes over a large area with long range ordering since this strongly affects device performance. To understand the development of gold layer nanomorphology, the detailed mechanism of structure formation are probed with time-resolved grazing incidence small-angle X-ray scattering (GISAXS) during gold sputter deposition. Gold is sputtered on a CdSe quantum dot array with a characteristic quantum dot spacing of approximate to 7 nm. In the initial stages of gold nanostructure growth, a preferential deposition of gold on top of quantum dots occurs. Thus, the quantum dots act as nucleation sites for gold growth. In later stages, the gold nanoparticles surrounding the quantum dots undergo a coarsening to form a complete layer comprised of gold-dot clusters. Next, growth proceeds dominantly via vertical growth of gold on these gold-dot clusters to form an gold capping layer. In this capping layer, a shift of the cluster boundaries due to ripening is found. Thus, a templating of gold on a CdSe quantum dot array is feasible at low gold coverage.
  •  
10.
  • Roth, Stephan V., et al. (författare)
  • Patterned Diblock co-polymer Thin Films as Templates for Advanced Anisotropic Metal Nanostructures
  • 2015
  • Ingår i: ACS Applied Materials and Interfaces. - : American Chemical Society (ACS). - 1944-8244 .- 1944-8252. ; 7:23, s. 12470-12477
  • Tidskriftsartikel (refereegranskat)abstract
    • We demonstrate glancing-angle deposition of gold on a nanostructured diblock copolymer, namely polystytene-block-poly(methyl methacrylate) thin film. Exploiting the selective wetting of gold on the polystyrene block, we are able to fabricate directional hierarchical structures. We prove the asymmetric growth of the gold nanoparticles and are able to extract the different growth laws by in situ scattering methods. The optical anisotropy of these hierarchical hybrid materials is further probed by angular resolved spectroscopic methods. This approach enables us to tailor functional hierarchical layers in nanodevices, such as nanoantennae arrays, organic photovoltaics, and sensor electronics.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy