SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Schwarze Per E.) srt2:(2015-2019)"

Sökning: WFRF:(Schwarze Per E.) > (2015-2019)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beelen, Rob, et al. (författare)
  • Natural-Cause Mortality and Long-Term Exposure to Particle Components : An Analysis of 19 European Cohorts within the Multi-Center ESCAPE Project
  • 2015
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 525-533
  • Forskningsöversikt (refereegranskat)abstract
    • Background: Studies have shown associations between mortality and long-term exposure to particulate matter air pollution. Few cohort studies have estimated the effects of the elemental composition of particulate matter on mortality. Objectives: Our aim was to study the association between natural-cause mortality and long-term exposure to elemental components of particulate matter. Methods: Mortality and confounder data from 19 European cohort studies were used. Residential exposure to eight a priori-selected components of particulate matter ( PM) was characterized following a strictly standardized protocol. Annual average concentrations of copper, iron, potassium, nickel, sulfur, silicon, vanadium, and zinc within PM size fractions <= 2.5 mu m (PM2.5) and <= 10 mu m (PM10) were estimated using land-use regression models. Cohort-specific statistical analyses of the associations between mortality and air pollution were conducted using Cox proportional hazards models using a common protocol followed by meta-analysis. Results: The total study population consisted of 291,816 participants, of whom 25,466 died from a natural cause during follow-up (average time of follow-up, 14.3 years). Hazard ratios were positive for almost all elements and statistically significant for PM2.5 sulfur (1.14; 95% CI: 1.06, 1.23 per 200ng/m(3)). In a two-pollutant model, the association with PM2.5 sulfur was robust to adjustment for PM2.5 mass, whereas the association with PM2.5 mass was reduced. Conclusions: Long-term exposure to PM2.5 sulfur was associated with natural-cause mortality. This association was robust to adjustment for other pollutants and PM2.5.
  •  
2.
  • Budnik, Lygia Therese, et al. (författare)
  • Diagnosis, monitoring and prevention of exposure-related non-communicable diseases in the living and working environment : DiMoPEx-project is designed to determine the impacts of environmental exposure on human health
  • 2018
  • Ingår i: Journal of Occupational Medicine and Toxicology. - : Springer Science and Business Media LLC. - 1745-6673. ; 13:1
  • Forskningsöversikt (refereegranskat)abstract
    • The WHO has ranked environmental hazardous exposures in the living and working environment among the top risk factors for chronic disease mortality. Worldwide, about 40 million people die each year from noncommunicable diseases (NCDs) including cancer, diabetes, and chronic cardiovascular, neurological and lung diseases. The exposure to ambient pollution in the living and working environment is exacerbated by individual susceptibilities and lifestyle-driven factors to produce complex and complicated NCD etiologies. Research addressing the links between environmental exposure and disease prevalence is key for prevention of the pandemic increase in NCD morbidity and mortality. However, the long latency, the chronic course of some diseases and the necessity to address cumulative exposures over very long periods does mean that it is often difficult to identify causal environmental exposures. EU-funded COST Action DiMoPEx is developing new concepts for a better understanding of health-environment (including gene-environment) interactions in the etiology of NCDs. The overarching idea is to teach and train scientists and physicians to learn how to include efficient and valid exposure assessments in their research and in their clinical practice in current and future cooperative projects. DiMoPEx partners have identified some of the emerging research needs, which include the lack of evidence-based exposure data and the need for human-equivalent animal models mirroring human lifespan and low-dose cumulative exposures. Utilizing an interdisciplinary approach incorporating seven working groups, DiMoPEx will focus on aspects of air pollution with particulate matter including dust and fibers and on exposure to low doses of solvents and sensitizing agents. Biomarkers of early exposure and their associated effects as indicators of disease-derived information will be tested and standardized within individual projects. Risks arising from some NCDs, like pneumoconioses, cancers and allergies, are predictable and preventable. Consequently, preventative action could lead to decreasing disease morbidity and mortality for many of the NCDs that are of major public concern. DiMoPEx plans to catalyze and stimulate interaction of scientists with policy-makers in attacking these exposure-related diseases.
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy