SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sciot Raf) srt2:(2010-2014)"

Sökning: WFRF:(Sciot Raf) > (2010-2014)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gebre-Medhin, Samuel, et al. (författare)
  • Recurrent Rearrangement of the PHF1 Gene in Ossifying Fibromyxoid Tumors.
  • 2012
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 181:3, s. 1069-1077
  • Tidskriftsartikel (refereegranskat)abstract
    • Ossifying fibromyxoid tumor (OFMT) is a soft tissue tumor of unknown lineage. Although most cases are histologically and clinically benign, some show malignant morphological features and local recurrences are not uncommon; a few may even metastasize. In the present study, cytogenetic analysis identified different structural rearrangements of chromosome band 6p21 in tumor cells from three cases of OFMT, including one with typical, one with atypical, and one with malignant morphological features. Mapping of the 6p21 breakpoint by fluorescence in situ hybridization (FISH) indicated that the PHF1 gene was rearranged in all three cases. Further FISH, 5'-rapid amplification of cDNA ends, and RT-PCR analyses disclosed an EP400/PHF1 fusion transcript in one of the cases. Interphase FISH on tumor sections from 13 additional cases of OFMT showed rearrangement of the PHF1 locus in four of four typical, two of three atypical, and one of six malignant lesions. Thus, the PHF1 gene, previously shown to be the 3'-partner of fusion genes in endometrial stromal tumors, is also recurrently involved in the pathogenesis of OFMTs, irrespective of whether they are diagnosed as typical, atypical, or malignant lesions. The PHF1 protein interacts with the polycomb-repressive complex 2 (PRC2), which, in turn, regulates the expression of a variety of developmental genes. Thus, the results indicate that deregulation of PRC2 target genes is crucial for OFMT development.
  •  
2.
  • Jin, Yuesheng, et al. (författare)
  • Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes.
  • 2012
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 51:5, s. 510-520
  • Tidskriftsartikel (refereegranskat)abstract
    • Soft tissue angiofibroma is a recently delineated tumor type of unknown cellular origin. Cytogenetic analysis of four cases showed that they shared a t(5;8)(p15;q13). In three of them it was the sole change, underlining its pathogenetic significance. FISH mapping suggested the involvement of the aryl hydrocarbon receptor repressor (AHRR) and nuclear receptor coactivator 2 (NCOA2) genes in 5p15 and 8q13, respectively. RT-PCR revealed in-frame AHRR/NCOA2 and NCOA2/AHHR transcripts in all four cases. Interphase FISH on paraffin-embedded tissue from 10 further cases without cytogenetic data showed that three were positive for fusion of AHRR and NCOA2. While AHRR has never been implicated in gene fusions before, NCOA2 is the 3'-partner in fusions with MYST3 and ETV6 in leukemias and with PAX3 and HEY1 in sarcomas. As in the previously described fusion proteins, NCOA2 contributes with its two activation domains to the AHRR/NCOA2 chimera, substituting for the repressor domain of AHRR. Because the amino terminal part of the transcription factor AHRR, responsible for the recognition of xenobiotic response elements in target genes and for heterodimerization, shows extensive homology with the aryl hydrocarbon receptor (AHR), the fusion is predicted to upregulate the AHR/ARNT signaling pathway. Indeed, global gene expression analysis showed upregulation of CYP1A1 as well as other typical target genes of this pathway, such as those encoding toll-like receptors. Apart from providing a diagnostic marker for soft tissue angiofibroma, the results also suggest that this tumor constitutes an interesting model for evaluating the cellular effects of AHR signaling. © 2012 Wiley Periodicals, Inc.
  •  
3.
  • Macchia, Gemma, et al. (författare)
  • FOSL1 as a candidate target gene for 11q12 rearrangements in desmoplastic fibroblastoma.
  • 2012
  • Ingår i: Laboratory Investigation. - : Elsevier BV. - 1530-0307 .- 0023-6837. ; 92:5, s. 735-743
  • Tidskriftsartikel (refereegranskat)abstract
    • Desmoplastic fibroblastoma (DF) is a benign fibroblastic/myofibroblastic tumor. Cytogenetic analyses have revealed consistent rearrangement of chromosome band 11q12, strongly suggesting that this region harbors a gene of pathogenetic importance. To identify the target gene of the 11q12 rearrangements, we analyzed six cases diagnosed as DF using chromosome banding, fluorescence in situ hybridization (FISH), single-nucleotide polymorphism array and gene expression approaches. Different structural rearrangements involving 11q12 were found in five of the six cases. Metaphase FISH analyses in two of them mapped the 11q12 breakpoints to an ∼20-kb region, harboring FOSL1. Global gene expression profiling followed by quantitative real-time PCR showed that FOSL1 was expressed at higher levels in DF with 11q12 rearrangements than in desmoid-type fibromatoses. Furthermore, FOSL1 was not upregulated in the single case of DF that did not show cytogenetic involvement of 11q12; instead this tumor was found to display a hemizygous loss on 5q, including the APC (adenomatous polyposis coli) locus, raising the possibility that it actually was a misdiagnosed Gardner fibroma. 5'RACE-PCR in two 11q12-positive DF did not identify any fusion transcripts. Thus, in agreement with the finding at chromosome banding analysis that varying translocation partners are involved in the 11q12 rearrangement, the molecular data suggest that the functional outcome of the 11q12 rearrangements is deregulated expression of FOSL1.Laboratory Investigation advance online publication, 12 March 2012; doi:10.1038/labinvest.2012.46.
  •  
4.
  • Mertens, Fredrik, et al. (författare)
  • The t(X;6) in subungual exostosis results in transcriptional deregulation of the gene for insulin receptor substrate 4.
  • 2011
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136. ; 128, s. 487-491
  • Tidskriftsartikel (refereegranskat)abstract
    • Subungual exostosis is a benign bone- and cartilage-forming tumor known to harbour a pathognomonic t(X;6)(q22;q13-14). Using global gene expression analysis and quantitative real-time PCR we could show that this translocation results in increased expression of the IRS4 gene, presumably due to disruption and/or exchange of regulatory sequences with the translocation partner, the COL12A1 gene. A corresponding deregulation at the protein level could be demonstrated in primary cell cultures using a combination of fluorescence in situ hybridization and immunostaining. As the t(X;6) usually is the sole cytogenetic aberration in subungual exostosis, the deregulated expression of IRS4 is likely to be pathogenetically essential. The exact role of IRS4 is still poorly investigated, but IRS proteins are known to act as mediators of signalling from receptors, such as the insulin and insulin-like growth factor 1 receptors, and thus have an important effect on cell growth and survival. (c) 2010 UICC.
  •  
5.
  • Mohajeri, Arezoo, et al. (författare)
  • Comprehensive genetic analysis identifies a pathognomonic NAB2/STAT6 fusion gene, nonrandom secondary genomic imbalances, and a characteristic gene expression profile in solitary fibrous tumor.
  • 2013
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257 .- 1098-2264. ; 52:10, s. 873-886
  • Tidskriftsartikel (refereegranskat)abstract
    • Solitary fibrous tumor (SFT) is a mesenchymal neoplasm displaying variable morphologic and clinical features. To identify pathogenetically important genetic rearrangements, 44 SFTs were analyzed using a variety of techniques. Chromosome banding and fluorescence in situ hybridization (FISH) showed recurrent breakpoints in 12q13, clustering near the NAB2 and STAT6 genes, and single nucleotide polymorphism array analysis disclosed frequent deletions affecting STAT6. Quantitative real-time PCR revealed high expression levels of the 5'-end of NAB2 and the 3'-end of STAT6, which at deep sequencing of enriched DNA corresponded to NAB2/STAT6 fusions. Subsequent reverse-transcriptase PCR (RT-PCR) analysis identified a NAB2/STAT6 fusion in 37/41 cases, confirming that this fusion gene underlies the pathogenesis of SFT. The hypothesis that the NAB2/STAT6 fusions will result in altered properties of the transcriptional co-repressor NAB2 - a key regulator of the early growth response 1 (EGR1) transcription factor - was corroborated by global gene expression analysis; SFTs showed deregulated expression of EGR1 target genes, as well as of other, developmentally important genes. We also identified several nonrandom secondary changes, notably loss of material from 13q and 14q. As neither chromosome banding nor FISH analysis identify more than a minor fraction of the fusion-positive cases, and because multiple primer combinations are required to identify all possible fusion transcripts by RT-PCR, alternative diagnostic markers might instead be found among deregulated genes identified at global gene expression analysis. Indeed, using immunohistochemistry on tissue microarrays, the top up-regulated gene, GRIA2, was found to be differentially expressed also at the protein level. © 2013 Wiley Periodicals, Inc.
  •  
6.
  • Pansuriya, Twinkal C., et al. (författare)
  • Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:12, s. 1256-1261
  • Tidskriftsartikel (refereegranskat)abstract
    • Ollier disease and Maffucci syndrome are non-hereditary skeletal disorders characterized by multiple enchondromas (Ollier disease) combined with spindle cell hemangiomas (Maffucci syndrome). We report somatic heterozygous mutations in IDH1 (c.394C>T encoding an R132C substitution and c.395G>A encoding an R132H substitution) or IDH2 (c.516G>C encoding R172S) in 87% of enchondromas (benign cartilage tumors) and in 70% of spindle cell hemangiomas (benign vascular lesions). In total, 35 of 43 (81%) subjects with Ollier disease and 10 of 13 (77%) with Maffucci syndrome carried IDH1 (98%) or IDH2 (2%) mutations in their tumors. Fourteen of 16 subjects had identical mutations in separate lesions. Immunohistochemistry to detect mutant IDH1 R132H protein suggested intraneoplastic and somatic mosaicism. IDH1 mutations in cartilage tumors were associated with hypermethylation and downregulated expression of several genes. Mutations were also found in 40% of solitary central cartilaginous tumors and in four chondrosarcoma cell lines, which will enable functional studies to assess the role of IDH1 and IDH2 mutations in tumor formation.
  •  
7.
  • Romeo, Salvatore, et al. (författare)
  • Heterogeneous and Complex Rearrangements of Chromosome Arm 6q in Chondromyxoid Fibroma. Delineation of Breakpoints and Analysis of Candidate Target Genes.
  • 2010
  • Ingår i: American Journal of Pathology. - : Elsevier BV. - 1525-2191 .- 0002-9440. ; 177:3, s. 1365-1376
  • Tidskriftsartikel (refereegranskat)abstract
    • Chondromyxoid fibroma (CMF) is an uncommon benign cartilaginous tumor of bone usually occurring during the second decade of life. CMF is associated with recurrent rearrangements of chromosome bands 6p23-25, 6q12-15, and 6q23-27. To delineate further the role and frequency of the involvement of three candidate regions (6q13, 6q23.3 and 6q24) in the pathogenesis of CMF, we studied a group of 43 cases using a molecular cytogenetic approach. Fluorescence in situ hybridization with probe sets bracketing the putative breakpoint regions was performed in 30 cases. The expression level of nearby candidate genes was studied by immunohistochemistry and quantitative RT-PCR in 24 and 23 cases, respectively. Whole-genome copy number screening was performed by array comparative genomic hybridization in 16 cases. Balanced and unbalanced rearrangements of 6q13 and 6q23.3 occurred in six and five cases, respectively, and a hemizygous deletion in 6q24 was found in five cases. Two known tumor suppressor genes map to the latter region: PLAGL1 and UTRN. However, neither of these two genes nor BCLAF1 and COL12A1, respectively located in 6q23.3 and 6q13, showed altered expression. Therefore, although rearrangements of chromosomal regions 6q13, 6q23.3, and 6q24 are common in CMF, the complexity of the changes precludes the use of a single fluorescence in situ hybridization probe set as an adjunct diagnostic tool. These data indicate that the genetic alterations in CMF are heterogeneous and are likely a result of a cryptic rearrangement beyond the resolution level of combined binary ratio fluorescence in situ hybridization or a point mutation.
  •  
8.
  • Romeo, Salvatore, et al. (författare)
  • Malignant fibrous histiocytoma and fibrosarcoma of bone: a re-assessment in the light of currently employed morphological, immunohistochemical and molecular approaches
  • 2012
  • Ingår i: Virchows Archiv: an international journal of pathology. - : Springer Science and Business Media LLC. - 1432-2307. ; 461:5, s. 561-570
  • Tidskriftsartikel (refereegranskat)abstract
    • Malignant fibrous histiocytoma (MFH) and fibrosarcoma (FS) of bone are rare malignant tumours and contentious entities. Sixty seven cases labelled as bone MFH (57) and bone FS (10) were retrieved from five bone tumour referral centres and reviewed to determine whether recent advances allowed for reclassification and identification of histological subgroups with distinct clinical behaviour. A panel of immunostains was applied: smooth muscle actin, desmin, h-caldesmon, cytokeratin AE1-AE3, CD31, CD34, CD68, CD163, CD45, S100 and epithelial membrane antigen. Additional fluorescence in situ hybridisation and immunohistochemistry were performed whenever appropriate. All cases were reviewed by six bone and soft tissue pathologists and a consensus was reached. Follow-up for 43 patients (median 42 months, range 6-223 months) was available. Initial histological diagnosis was reformulated in 18 cases (26.8 %). Seven cases were reclassified as leiomyosarcoma, six as osteosarcoma, three as myxofibrosarcoma and one each as embryonal rhabdomyosarcoma and interdigitating dendritic cell sarcoma. One case showed a peculiar biphasic phenotype with epithelioid nests and myofibroblastic spindle cells. Among the remaining 48 cases, which met the WHO criteria for bone FS and bone MFH, we identified five subgroups. Seven cases were reclassified as undifferentiated pleomorphic sarcoma (UPS) and 11 as UPS with incomplete myogenic differentiation due to positivity for at least one myogenic marker. Six were reclassified as spindle cell sarcoma not otherwise specified. Among the remaining 24 cases, we identified a further two recurrent morphologic patterns: eight cases demonstrated a myoepithelioma-like phenotype and 16 cases a myofibroblastic phenotype. One of the myoepithelioma-like cases harboured a EWSR1-NFATC2 fusion. It appears that bone MFH and bone FS represent at best exclusion diagnoses.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy