SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seashore Ludlow Brinton) srt2:(2020-2024)"

Sökning: WFRF:(Seashore Ludlow Brinton) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mou, Tian, et al. (författare)
  • The transcriptome-wide landscape of molecular subtype-specific mRNA expression profiles in acute myeloid leukemia
  • 2021
  • Ingår i: American Journal of Hematology. - : John Wiley & Sons. - 0361-8609 .- 1096-8652. ; 96:5, s. 580-588
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular classification of acute myeloid leukemia (AML) aids prognostic stratification and clinical management. Our aim in this study is to identify transcriptome-wide mRNAs that are specific to each of the molecular subtypes of AML. We analyzed RNA-sequencing data of 955 AML samples from three cohorts, including the BeatAML project, the Cancer Genome Atlas, and a cohort of Swedish patients to provide a comprehensive transcriptome-wide view of subtype-specific mRNA expression. We identified 729 subtype-specific mRNAs, discovered in the BeatAML project and validated in the other two cohorts. Using unique proteomics data, we also validated the presence of subtype-specific mRNAs at the protein level, yielding a rich collection of potential protein-based biomarkers for the AML community. To enable the exploration of subtype-specific mRNA expression by the broader scientific community, we provide an interactive resource to the public.
  •  
2.
  • Reid, Steven E, et al. (författare)
  • Cancer-associated fibroblasts rewire the estrogen receptor response in luminal breast cancer, enabling estrogen independence
  • 2024
  • Ingår i: Oncogene. - 1476-5594.
  • Tidskriftsartikel (refereegranskat)abstract
    • Advanced breast cancers represent a major therapeutic challenge due to their refractoriness to treatment. Cancer-associated fibroblasts (CAFs) are the most abundant constituents of the tumor microenvironment and have been linked to most hallmarks of cancer. However, the influence of CAFs on therapeutic outcome remains largely unchartered. Here, we reveal that spatial coincidence of abundant CAF infiltration with malignant cells was associated with reduced estrogen receptor (ER)-α expression and activity in luminal breast tumors. Notably, CAFs mediated estrogen-independent tumor growth by selectively regulating ER-α signaling. Whereas most prototypical estrogen-responsive genes were suppressed, CAFs maintained gene expression related to therapeutic resistance, basal-like differentiation, and invasion. A functional drug screen in co-cultures identified effector pathways involved in the CAF-induced regulation of ER-α signaling. Among these, the Transforming Growth Factor-β and the Janus kinase signaling cascades were validated as actionable targets to counteract the CAF-induced modulation of ER-α activity. Finally, genes that were downregulated in cancer cells by CAFs were predictive of poor response to endocrine treatment. In conclusion, our work reveals that CAFs directly control the luminal breast cancer phenotype by selectively modulating ER-α expression and transcriptional function, and further proposes novel targets to disrupt the crosstalk between CAFs and tumor cells to reinstate treatment response to endocrine therapy in patients.
  •  
3.
  • Sandström, Niklas, 1981-, et al. (författare)
  • Miniaturized and multiplexed high-content screening of drug and immune sensitivity in a multichambered microwell chip
  • 2022
  • Ingår i: CELL REPORTS METHODS. - : Elsevier BV. - 2667-2375. ; 2:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Here, we present a methodology based on multiplexed fluorescence screening of two-or three-dimensional cell cultures in a newly designed multichambered microwell chip, allowing direct assessment of drug or im-mune cell cytotoxic efficacy. We establish a framework for cell culture, formation of tumor spheroids, fluores-cence labeling, and imaging of fixed or live cells at various magnifications directly in the chip together with data analysis and interpretation. The methodology is demonstrated by drug cytotoxicity screening using ovarian and non-small cell lung cancer cells and by cellular cytotoxicity screening targeting tumor spheroids of renal carcinoma and ovarian carcinoma with natural killer cells from healthy donors. The miniaturized format allowing long-term cell culture, efficient screening, and high-quality imaging of small sample volumes makes this methodology promising for individualized cytotoxicity tests for precision medicine.
  •  
4.
  • Sanjiv, Kumar, et al. (författare)
  • MTH1 Inhibitor TH1579 Induces Oxidative DNA Damage and Mitotic Arrest in Acute Myeloid Leukemia
  • 2021
  • Ingår i: Cancer Research. - : American Association For Cancer Research (AACR). - 0008-5472 .- 1538-7445. ; 81:22, s. 5733-5744
  • Tidskriftsartikel (refereegranskat)abstract
    • Acute myeloid leukemia (AML) is an aggressive hematologic malignancy, exhibiting high levels of reactive oxygen species (ROS). ROS levels have been suggested to drive leukemogenesis and is thus a potential novel target for treating AML. MTH1 prevents incorporation of oxidized nucleotides into the DNA to maintain genome integrity and is upregulated in many cancers. Here we demonstrate that hematologic cancers are highly sensitive to MTH1 inhibitor TH1579 (karonudib). A functional precision medicine ex vivo screen in primary AML bone marrow samples demonstrated a broad response profile of TH1579, independent of the genomic alteration of AML, resembling the response profile of the standard-of-care treatments cytarabine and doxorubicin. Furthermore, TH1579 killed primary human AML blast cells (CD45+) as well as chemotherapy resistance leukemic stem cells (CD45+Lin−CD34+CD38−), which are often responsible for AML progression. TH1579 killed AML cells by causing mitotic arrest, elevating intracellular ROS levels, and enhancing oxidative DNA damage. TH1579 showed a significant therapeutic window, was well tolerated in animals, and could be combined with standard-of-care treatments to further improve efficacy. TH1579 significantly improved survival in two different AML disease models in vivo. In conclusion, the preclinical data presented here support that TH1579 is a promising novel anticancer agent for AML, providing a rationale to investigate the clinical usefulness of TH1579 in AML in an ongoing clinical phase I trial.
  •  
5.
  • Selvin, Tove (författare)
  • Preclinical tumor-immune modeling : For the identification of immunomodulatory drugs
  • 2023
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • For a long time, the field of cancer research was dominated by a tumor cell-centric view. That, however, changed once it became recognized that medical cancer treatment is largely influenced by the combined effect exerted on both cancer and immune cells. In this work, we aimed to develop and apply preclinical model systems for the identification and evaluation of immunomodulatory anti-cancer agents. In Paper I, we employed single-cell RNA sequencing (scRNA-seq) to investigate immunological effects of trifluridine (FTD), a nucleoside analogue used for the treatment of colorectal cancer (CRC). The study revealed that while FTD induces immunogenic cell death (ICD), it may also attenuate T cell-mediated antitumor responses. In paper II and III, we developed and applied a phenotypic screening platform based on a miniaturized tumor-immune model. In paper II, aiming to identify immunological effects of clinical relevance and provide a reference point for screening novel compound libraries, the model system was used to assess a broad panel of standard anticancer agents. In paper III, the platform was used to screen a drug library containing 1280 small molecule drugs, all approved by the FDA or other agencies. Using this approach, statins were identified as enhancers of immune cell-mediated cancer cell killing. Finally, in paper IV, we developed the immuno-oncology hollow fiber assay (HFA) with the goal of bridging the gap between cell based in vitro assays and more complex mouse models for evaluation of immuno-oncological agents. The HFA is an in vivo assay in which semipermeable fibers are filled with cancer cells and implanted in rodents. We further developed the HFA to incorporate both cancer and immune cells. This novel assay demonstrated the potential to capture immune-mediated cancer cell killing in vivo within a matter of days. Collectively, this work provides a research approach for immuno-oncology drug screening, in vitro validation, and initial in vivo evaluation. 
  •  
6.
  • Struyf, Nona, et al. (författare)
  • Delineating functional and molecular impact of ex vivo sample handling in precision medicine
  • 2024
  • Ingår i: npj Precision Oncology. - : Springer Nature. - 2397-768X. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Consistent handling of samples is crucial for achieving reproducible molecular and functional testing results in translational research. Here, we used 229 acute myeloid leukemia (AML) patient samples to assess the impact of sample handling on high-throughput functional drug testing, mass spectrometry-based proteomics, and flow cytometry. Our data revealed novel and previously described changes in cell phenotype and drug response dependent on sample biobanking. Specifically, myeloid cells with a CD117 (c-KIT) positive phenotype decreased after biobanking, potentially distorting cell population representations and affecting drugs targeting these cells. Additionally, highly granular AML cell numbers decreased after freezing. Secondly, protein expression levels, as well as sensitivity to drugs targeting cell proliferation, metabolism, tyrosine kinases (e.g., JAK, KIT, FLT3), and BH3 mimetics were notably affected by biobanking. Moreover, drug response profiles of paired fresh and frozen samples showed that freezing samples can lead to systematic errors in drug sensitivity scores. While a high correlation between fresh and frozen for the entire drug library was observed, freezing cells had a considerable impact at an individual level, which could influence outcomes in translational studies. Our study highlights conditions where standardization is needed to improve reproducibility, and where validation of data generated from biobanked cohorts may be particularly important.
  •  
7.
  • Trossbach, Martin, et al. (författare)
  • 3D microspheroid assembly characterization in microfluidic droplets by deep learning & automated image analysis
  • 2021
  • Ingår i: Proceedings MicroTAS 2021 - 25th International Conference on Miniaturized Systems for Chemistry and Life Sciences. - : Chemical and Biological Microsystems Society. ; , s. 1663-1664
  • Konferensbidrag (refereegranskat)abstract
    • Here, we build, train and apply an automated imaging and deep learning image analysis pipeline for optimization of assembly and culture conditions for miniaturized 3D cell spheroids production in microfluidic droplets. Miniaturization of spheroids, rapid assembly optimization and automated spheroid analysis would amount to a paradigm shift in early drug development. We expand an automated ultra-high-throughput workflow for minispheroid production in microfluidic droplets by training a convolutional neural network (CNN) model for automated minispheroid morphology assessment and classification. The CNN classifier was used to characterize minispheroid assembly of three different cell lines for a range of incubation times and surfactant concentrations.
  •  
8.
  • Trossbach, Martin, et al. (författare)
  • A Portable, Negative-Pressure Actuated, Dynamically Tunable Microfluidic Droplet Generator
  • 2022
  • Ingår i: Micromachines. - : MDPI AG. - 2072-666X. ; 13:11, s. 1823-1823
  • Tidskriftsartikel (refereegranskat)abstract
    • Droplet microfluidics utilize a monodisperse water-in-oil emulsion, with an expanding toolbox offering a wide variety of operations on a range of droplet sizes at high throughput. However, translation of these capabilities into applications for non-expert laboratories to fully harness the inherent potential of microscale manipulations is woefully trailing behind. One major obstacle is that droplet microfluidic setups often rely on custom fabricated devices, costly liquid actuators, and are not easily set up and operated by non-specialists. This impedes wider adoption of droplet technologies in, e.g., the life sciences. Here, we demonstrate an easy-to-use minimal droplet production setup with a small footprint, built exclusively from inexpensive commercially sourced parts, powered and controlled by a laptop. We characterize the components of the system and demonstrate production of droplets ranging in volume from 3 to 21 nL in a single microfluidic device. Furthermore, we describe the dynamic tuning of droplet composition. Finally, we demonstrate the production of droplet-templated cell spheroids from primary cells, where the mobility and simplicity of the setup enables its use within a biosafety cabinet. Taken together, we believe this minimal droplet setup is ideal to drive broad adoption of droplet microfluidics technology.
  •  
9.
  • Trossbach, Martin, et al. (författare)
  • High-throughput cell spheroid production and assembly analysis by microfluidics and deep learning
  • 2023
  • Ingår i: SLAS TECHNOLOGY. - : Elsevier BV. - 2472-6303 .- 2472-6311. ; 28:6, s. 423-432
  • Tidskriftsartikel (refereegranskat)abstract
    • 3D cell culture models are important tools in translational research but have been out of reach for high-throughput screening due to complexity, requirement of large cell numbers and inadequate standardization. Microfluidics and culture model miniaturization technologies could overcome these challenges. Here, we present a high throughput workflow to produce and characterize the formation of miniaturized spheroids using deep learning. We train a convolutional neural network (CNN) for cell ensemble morphology classification for droplet microfluidic minispheroid production, benchmark it against more conventional image analysis, and characterize minispheroid assembly determining optimal surfactant concentrations and incubation times for minispheroid production for three cell lines with different spheroid formation properties. Notably, this format is compatible with large-scale spheroid production and screening. The presented workflow and CNN offer a template for large scale minispheroid production and analysis and can be extended and re-trained to characterize morphological responses in spheroids to additives, culture conditions and large drug libraries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9
Typ av publikation
tidskriftsartikel (7)
konferensbidrag (1)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (8)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Seashore-Ludlow, Bri ... (8)
Lehmann, Sören (3)
Jönsson, Håkan, PhD, ... (3)
Östling, Päivi (2)
Kallioniemi, Olli (2)
Vesterlund, Mattias (2)
visa fler...
Jafari, Rozbeh (2)
Bohlin, Anna (2)
Orre, Lukas M. (2)
Struyf, Nona (2)
Henriksson, Martin (1)
Helleday, Thomas (1)
Lehtiö, Janne (1)
Sandoz, Patrick (1)
Wiklund, Martin (1)
Frisk, Thomas (1)
Sjölund, Jonas (1)
Morsing, Mikkel (1)
Lehtio, Janne (1)
Pawitan, Yudi (1)
Pietras, Kristian (1)
Backvall, Helena (1)
Selvin, Tove (1)
Önfelt, Björn (1)
Larsson, Sara (1)
Takai, Madoka (1)
Mermelekas, Georgios (1)
Gad, Helge (1)
Bocci, Matteo (1)
Friedrich, Stefanie (1)
James, Tojo (1)
Scobie, Martin (1)
Berglund, Ulrika War ... (1)
Höglund, Andreas (1)
Göktürk, Camilla (1)
Bolivar, Paulina (1)
Wiita, Elisee (1)
Rasti, Azita (1)
Sanjiv, Kumar (1)
Koolmeister, Tobias (1)
Ostling, Paivi (1)
Calderon-Montano, Jo ... (1)
Walfridsson, Julian (1)
Carannante, Valentin ... (1)
Sandström, Niklas, 1 ... (1)
Olofsson, Karl (1)
van Ooijen, Hanna (1)
Moussaud-Lamodiere, ... (1)
Cordero, Eugenia (1)
Visnes, Torkild (1)
visa färre...
Lärosäte
Karolinska Institutet (7)
Kungliga Tekniska Högskolan (4)
Uppsala universitet (4)
Stockholms universitet (1)
Lunds universitet (1)
Språk
Engelska (9)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (9)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy