SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sebastian D) srt2:(1996-1999)"

Sökning: WFRF:(Sebastian D) > (1996-1999)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Ferrari, D., et al. (författare)
  • Differential regulation and ATP requirement for caspase-8 and caspase-3 activation during CD95- and anticancer drug-induced apoptosis
  • 1998
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 0022-1007 .- 1540-9538. ; 188:5, s. 979-984
  • Tidskriftsartikel (refereegranskat)abstract
    • Apoptosis is induced by different stimuli, among them triggering of the death receptor CD95, staurosporine, and chemotherapeutic drugs. In all cases, apoptosis is mediated by caspases, although it is unclear how these diverse apoptotic stimuli cause protease activation. Two regulatory pathways have been recently identified, but it remains unknown whether they are functionally independent or linked to each other. One is mediated by recruitment of the proximal regulator caspase-8 to the death receptor complex. The other pathway is controlled by the release of cytochrome c from mitochondria and the subsequent ATP-dependent activation of the death regulator apoptotic protease-activating factor 1 (Apaf-1). Here, we report that both pathways can be dissected by depletion of intracellular ATP. Prevention of ATP production completely inhibited caspase activation and apoptosis in response to chemotherapeutic drugs and staurosporine. Interestingly, caspase-8, whose function appeared to be restricted to death receptors, was also activated by these drugs under normal conditions, but not after ATP depletion. In contrast, inhibition of ATP production did not affect caspase activation after triggering of CD95. These results suggest that chemotherapeutic drug-induced caspase activation is entirely controlled by a receptor-independent mitochondrial pathway, whereas CD95-induced apoptosis can be regulated by a separate pathway not requiring Apaf-1 function.
  •  
3.
  • Ferrari, D., et al. (författare)
  • P2Z purinoreceptor ligation induces activation of caspases with distinct roles in apoptotic and necrotic alterations of cell death
  • 1999
  • Ingår i: FEBS Letters. - : Elsevier. - 0014-5793 .- 1873-3468. ; 447:1, s. 71-75
  • Tidskriftsartikel (refereegranskat)abstract
    • Myeloic cells express a peculiar surface receptor for extracellular ATP, called the P2Z/P2X(7) purinoreceptor, which is involved in cell death signalling. Here, we investigated the role of caspases, a family of proteases implicated in apoptosis and the cytokine secretion. We observed that extracellular ATP induced the activation of multiple caspases including caspase-1, -3 and -8, and subsequent cleavage of the caspase substrates PARP and Iamin B. Using caspase inhibitors, it was found that caspases were specifically involved in ATP-induced apoptotic damage such as chromatin condensation and DNA fragmentation, In contrast, inhibition of caspases only marginally affected necrotic alterations and cell death proceeded normally whether or not nuclear damage was blocked. Our results therefore suggest that the activation of caspases by the P2Z receptor is required for apoptotic but not necrotic alterations of ATP-induced cell death. (C) 1999 Federation of European Biochemical Societies.
  •  
4.
  • Schulze-Osthoff, Klaus, et al. (författare)
  • Apoptosis signaling by death receptors
  • 1998
  • Ingår i: European Journal of Biochemistry. - : Wiley. - 0014-2956 .- 1432-1033. ; 254:3, s. 439-459
  • Tidskriftsartikel (refereegranskat)abstract
    • Death receptors have been recently identified as a subgroup of the TNF-receptor superfamily with a predominant function in induction of apoptosis. The receptors are characterized by an intracellular region, called the death domain, which is required for the transmission of the cytotoxic signal. Currently, five different such death receptors are known including tumor necrosis factor (TNF) receptor-1, CD95 (Fas/APO-1), TNF-receptor-related apoptosis-mediated protein (TRAMP) and TNF-related apoptosis-inducing ligand (TRAIL) receptor-1 and -2. The signaling pathways by which these receptors induce apoptosis are rather similar. Ligand binding induces receptor oligomerization, followed by the recruitment of an adaptor protein to the death domain through homophilic interaction. The adaptor protein then binds a proximal caspase, thereby connecting receptor signaling to the apoptotic effector machinery. In addition, further pathways have been linked to death receptor-mediated apoptosis, such as sphingomyelinases, JNK kinases and oxidative stress. These pro-apoptotic signals are counteracted by several mechanisms which inhibit apoptosis at different levels. This review summarizes the current and rapidly expanding knowledge about the biological functions of death receptors and the mechanisms to trigger or to counteract cell death.
  •  
5.
  • Wiser, O, et al. (författare)
  • The voltage sensitive Lc-type Ca2+ channel is functionally coupled to the exocytotic machinery
  • 1999
  • Ingår i: Proceedings of the National Academy of Sciences. - 1091-6490 .- 0027-8424. ; 96:1, s. 248-253
  • Tidskriftsartikel (refereegranskat)abstract
    • Although N- and P-type Ca2+ channels predominant in fast-secreting systems, Lc-type Ca2+ channels (C-class) can play a similar role in certain secretory cells and synapses. For example, in retinal bipolar cells, Ca2+ entry through the Lc channels triggers ultrafast exocytosis, and in pancreatic beta-cells, evoked secretion is highly sensitive to Ca2+. These findings suggest that a rapidly release pool of vesicles colocalizes with the Ca2+ channels to allow high Ca2+ concentration and a tight coupling of the Lc channels at the release site. In binding studies, we show that the Lc channel is physically associated with synaptotagmin (p65) and the soluble N-ethylmaleimide-sensitive attachment proteins receptors: syntaxin and synaptosomal-associated protein of 25 kDa. Soluble N-ethylmaleimide-sensitive attachent proteins receptors coexpressed in Xenopus oocytes along with the Lc channel modify the kinetic properties of the channel. The modulatory action of syntaxin can be overcome by coexpressing p65, where at a certain ratio of p65/syntaxin, the channel regains its unaltered kinetic parameters. The cytosolic region of the channel, Lc753-893, separating repeats II-III of its alpha1C subunit, interacts with p65 and "pulls" down native p65 from rat brain membranes. Lc753-893 injected into single insulin-secreting beta-cell, inhibits secretion in response to channel opening, but not in response to photolysis of caged Ca2+, nor does it affect Ca2+ current. These results suggest that Lc753-893 competes with the endogenous channel for the synaptic proteins and disrupts the spatial coupling with the secretory apparatus. The molecular organization of the Lc channel and the secretory machinery into a multiprotein complex (named excitosome) appears to be essential for an effective depolarization evoked exocytosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy