SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Segal A) srt2:(2015-2019)"

Sökning: WFRF:(Segal A) > (2015-2019)

  • Resultat 1-10 av 39
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Helbig, K. L., et al. (författare)
  • De Novo Pathogenic Variants in CACNA1E Cause Developmental and Epileptic Encephalopathy with Contractures, Macrocephaly, and Dyskinesias
  • 2018
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 103:5, s. 666-678
  • Tidskriftsartikel (refereegranskat)abstract
    • Developmental and epileptic encephalopathies (DEEs) are severe neurodevelopmental disorders often beginning in infancy or early childhood that are characterized by intractable seizures, abundant epileptiform activity on EEG, and developmental impairment or regression. CACNA1E is highly expressed in the central nervous system and encodes the alpha(1)-subunit of the voltage-gated Ca(V)2.3 channel, which conducts high voltage-activated R-type calcium currents that initiate synaptic transmission. Using next-generation sequencing techniques, we identified de novo CACNA1E variants in 30 individuals with DEE, characterized by refractory infantile-onset seizures, severe hypotonia, and profound developmental impairment, often with congenital contractures, macrocephaly, hyperkinetic movement disorders, and early death. Most of the 14, partially recurring, variants cluster within the cytoplasmic ends of all four S6 segments, which form the presumed Ca(V)2.3 channel activation gate. Functional analysis of several S6 variants revealed consistent gain-of-function effects comprising facilitated voltage-dependent activation and slowed inactivation. Another variant located in the domain II S4-S5 linker results in facilitated activation and increased current density. Five participants achieved seizure freedom on the anti-epileptic drug topiramate, which blocks R-type calcium channels. We establish pathogenic variants in CACNA1E as a cause of DEEs and suggest facilitated R-type calcium currents as a disease mechanism for human epilepsy and developmental disorders.
  •  
4.
  • Pulit, SL, et al. (författare)
  • Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study.
  • 2016
  • Ingår i: The Lancet. Neurology. - 1474-4465. ; 15:2, s. 174-84
  • Tidskriftsartikel (refereegranskat)abstract
    • The discovery of disease-associated loci through genome-wide association studies (GWAS) is the leading genetic approach to the identification of novel biological pathways underlying diseases in humans. Until recently, GWAS in ischaemic stroke have been limited by small sample sizes and have yielded few loci associated with ischaemic stroke. We did a large-scale GWAS to identify additional susceptibility genes for stroke and its subtypes.To identify genetic loci associated with ischaemic stroke, we did a two-stage GWAS. In the first stage, we included 16851 cases with state-of-the-art phenotyping data and 32473 stroke-free controls. Cases were aged 16 to 104 years, recruited between 1989 and 2012, and subtypes of ischaemic stroke were recorded by centrally trained and certified investigators who used the web-based protocol, Causative Classification of Stroke (CCS). We constructed case-control strata by identifying samples that were genotyped on nearly identical arrays and were of similar genetic ancestral background. We cleaned and imputed data by use of dense imputation reference panels generated from whole-genome sequence data. We did genome-wide testing to identify stroke-associated loci within each stratum for each available phenotype, and we combined summary-level results using inverse variance-weighted fixed-effects meta-analysis. In the second stage, we did in-silico lookups of 1372 single nucleotide polymorphisms identified from the first stage GWAS in 20941 cases and 364736 unique stroke-free controls. The ischaemic stroke subtypes of these cases had previously been established with the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification system, in accordance with local standards. Results from the two stages were then jointly analysed in a final meta-analysis.We identified a novel locus (G allele at rs12122341) at 1p13.2 near TSPAN2 that was associated with large artery atherosclerosis-related stroke (first stage odds ratio [OR] 1·21, 95% CI 1·13-1·30, p=4·50×10(-8); joint OR 1·19, 1·12-1·26, p=1·30×10(-9)). Our results also supported robust associations with ischaemic stroke for four other loci that have been reported in previous studies, including PITX2 (first stage OR 1·39, 1·29-1·49, p=3·26×10(-19); joint OR 1·37, 1·30-1·45, p=2·79×10(-32)) and ZFHX3 (first stage OR 1·19, 1·11-1·27, p=2·93×10(-7); joint OR 1·17, 1·11-1·23, p=2·29×10(-10)) for cardioembolic stroke, and HDAC9 (first stage OR 1·29, 1·18-1·42, p=3·50×10(-8); joint OR 1·24, 1·15-1·33, p=4·52×10(-9)) for large artery atherosclerosis stroke. The 12q24 locus near ALDH2, which has previously been associated with all ischaemic stroke but not with any specific subtype, exceeded genome-wide significance in the meta-analysis of small artery stroke (first stage OR 1·20, 1·12-1·28, p=6·82×10(-8); joint OR 1·17, 1·11-1·23, p=2·92×10(-9)). Other loci associated with stroke in previous studies, including NINJ2, were not confirmed.Our results suggest that all ischaemic stroke-related loci previously implicated by GWAS are subtype specific. We identified a novel gene associated with large artery atherosclerosis stroke susceptibility. Follow-up studies will be necessary to establish whether the locus near TSPAN2 can be a target for a novel therapeutic approach to stroke prevention. In view of the subtype-specificity of the associations detected, the rich phenotyping data available in the Stroke Genetics Network (SiGN) are likely to be crucial for further genetic discoveries related to ischaemic stroke.US National Institute of Neurological Disorders and Stroke, National Institutes of Health.
  •  
5.
  • Lissek, T, et al. (författare)
  • Building Bridges through Science
  • 2017
  • Ingår i: Neuron. - : Elsevier BV. - 1097-4199 .- 0896-6273. ; 96:4, s. 730-735
  • Tidskriftsartikel (refereegranskat)
  •  
6.
  •  
7.
  • Liu, Ke, et al. (författare)
  • X Chromosome Dose and Sex Bias in Autoimmune Diseases : Increased 47,XXX in Systemic Lupus Erythematosus and Sjögren's Syndrome
  • 2016
  • Ingår i: Arthritis & Rheumatology. - : Wiley. - 2326-5191 .- 2326-5205. ; 68:5, s. 1290-1300
  • Tidskriftsartikel (refereegranskat)abstract
    • OBJECTIVE:More than 80% of autoimmune disease is female dominant, but the mechanism for this female bias is poorly understood. We suspected an X chromosome dose effect and hypothesized that trisomy X (47,XXX, 1 in ∼1,000 live female births) would be increased in female predominant diseases (e.g. systemic lupus erythematosus [SLE], primary Sjögren's syndrome [SS], primary biliary cirrhosis [PBC] and rheumatoid arthritis [RA]) compared to diseases without female predominance (sarcoidosis) and controls.METHODS:We identified 47,XXX subjects using aggregate data from single nucleotide polymorphism (SNP) arrays and confirmed, when possible, by fluorescent in situ hybridization (FISH) or quantitative polymerase chain reaction (q-PCR).RESULTS:We found 47,XXX in seven of 2,826 SLE and three of 1,033 SS female patients, but only in two of the 7,074 female controls (p=0.003, OR=8.78, 95% CI: 1.67-86.79 and p=0.02, OR=10.29, 95% CI: 1.18-123.47; respectively). One 47,XXX subject was present for ∼404 SLE women and ∼344 SS women. 47,XXX was present in excess among SLE and SS subjects.CONCLUSION:The estimated prevalence of SLE and SS in women with 47,XXX was respectively ∼2.5 and ∼2.9 times higher than in 46,XX women and ∼25 and ∼41 times higher than in 46,XY men. No statistically significant increase of 47,XXX was observed in other female-biased diseases (PBC or RA), supporting the idea of multiple pathways to sex bias in autoimmunity. This article is protected by copyright. All rights reserved.
  •  
8.
  • Kottyan, Leah C., et al. (författare)
  • The IRF5-TNPO3 association with systemic lupus erythematosus has two components that other autoimmune disorders variably share.
  • 2015
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 24:2, s. 582-596
  • Tidskriftsartikel (refereegranskat)abstract
    • Exploiting genotyping, DNA sequencing, imputation and trans-ancestral mapping, we used Bayesian and frequentist approaches to model the IRF5-TNPO3 locus association, now implicated in two immunotherapies and seven autoimmune diseases. Specifically, in systemic lupus erythematosus (SLE), we resolved separate associations in the IRF5 promoter (all ancestries) and with an extended European haplotype. We captured 3230 IRF5-TNPO3 high-quality, common variants across 5 ethnicities in 8395 SLE cases and 7367 controls. The genetic effect from the IRF5 promoter can be explained by any one of four variants in 5.7 kb (P-valuemeta = 6 × 10(-49); OR = 1.38-1.97). The second genetic effect spanned an 85.5-kb, 24-variant haplotype that included the genes IRF5 and TNPO3 (P-valuesEU = 10(-27)-10(-32), OR = 1.7-1.81). Many variants at the IRF5 locus with previously assigned biological function are not members of either final credible set of potential causal variants identified herein. In addition to the known biologically functional variants, we demonstrated that the risk allele of rs4728142, a variant in the promoter among the lowest frequentist probability and highest Bayesian posterior probability, was correlated with IRF5 expression and differentially binds the transcription factor ZBTB3. Our analytical strategy provides a novel framework for future studies aimed at dissecting etiological genetic effects. Finally, both SLE elements of the statistical model appear to operate in Sjögrens syndrome and systemic sclerosis whereas only the IRF5-TNPO3 gene-spanning haplotype is associated with primary biliary cirrhosis, demonstrating the nuance of similarity and difference in autoimmune disease risk mechanisms at IRF5-TNPO3.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 39

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy