SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Segerman Bo) srt2:(2020-2022)"

Sökning: WFRF:(Segerman Bo) > (2020-2022)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ekman, Lisa, et al. (författare)
  • A shotgun metagenomic investigation of the microbiota of udder cleft dermatitis in comparison to healthy skin in dairy cows
  • 2020
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 15
  • Tidskriftsartikel (refereegranskat)abstract
    • Udder cleft dermatitis (UCD) is a skin condition affecting the fore udder attachment of dairy cows. UCD may be defined as mild (eczematous skin changes) or severe (open wounds, large skin changes). Our aims were to compare the microbiota of mild and severe UCD lesions with the microbiota of healthy skin from the fore udder attachment of control cows, and to investigate whether mastitis-causing pathogens are present in UCD lesions. Samples were obtained from cows in six dairy herds. In total, 36 UCD samples categorized as mild (n = 17) or severe (n = 19) and 13 control samples were sequenced using a shotgun metagenomic approach and the reads were taxonomically classified based on their k-mer content. The Wilcoxon rank sum test was used to compare the abundance of different taxa between different sample types, as well as to compare the bacterial diversity between samples. A high proportion of bacteria was seen in all samples. Control samples had a higher proportion of archaeal reads, whereas most samples had low proportions of fungi, protozoa and viruses. The bacterial microbiota differed between controls and mild and severe UCD samples in both composition and diversity. Subgroups of UCD samples were visible, characterized by increased proportion of one or a few bacterial genera or species, e.g. Corynebacterium, Staphylococcus, Brevibacterium luteolum, Trueperella pyogenes and Fusobacterium necrophorum. Bifidobacterium spp. were more common in controls compared to UCD samples. The bacterial diversity was higher in controls compared to UCD samples. Bacteria commonly associated with mastitis were uncommon. In conclusion, a dysbiosis of the microbiota of mild and severe UCD samples was seen, characterized by decreased diversity and an increased proportion of certain bacteria. There was no evidence of a specific pathogen causing UCD or that UCD lesions are important reservoirs for mastitis-causing bacteria.
  •  
2.
  • Segerman, Bo, et al. (författare)
  • The efficiency of Nextera XT tagmentation depends on G and C bases in the binding motif leading to uneven coverage in bacterial species with low and neutral GC-content
  • 2022
  • Ingår i: Frontiers in Microbiology. - : Frontiers Media S.A.. - 1664-302X. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • Whole-genome sequencing (WGS) is becoming the new standard for bacterial high-resolution typing and the performance of laboratories is being evaluated in interlaboratory comparisons. The use of the Illumina Nextera XT library preparation kit has been found to be associated with poorer performance due to a GC-content-dependent coverage bias. The bias is especially strong when sequencing low GC-content species. Here, we have made an in-depth analysis of the Nextera XT coverage bias problem using data from a proficiency test of the low GC-content species Campylobacter jejuni. We have compared Nextera XT with Nextera Flex/DNA Prep and examined the consequences on downstream WGS analysis when using different quantities of raw data. We have also analyzed how the coverage bias relates to differential usage of tagmentation cleavage sites. We found that the tagmentation site was characterized by a symmetrical motif with a central AT-rich region surrounded by Gs and Cs. The Gs and Cs appeared to be the main determinant for cleavage efficiency and the genomic regions that were associated with low coverage only contained low-efficiency cleavage sites. This explains why low GC-content genomes and regions are more subjected to coverage bias. We furthermore extended our analysis to other datasets representing other bacterial species. We visualized how the coverage bias was large in low GC-content species such as C. jejuni, C. coli, Staphylococcus aureus, and Listeria monocytogenes, whereas species with neutral GC-content such as Salmonella enterica and Escherichia coli were only affected in certain regions. Species with high GC-content such as Mycobacterium tuberculosis and Pseudomonas aeruginosa were hardly affected at all. The coverage bias associated with Nextera XT was not found when Nextera Flex/DNA Prep had been used.
  •  
3.
  • Segerman, Bo (författare)
  • The Most Frequently Used Sequencing Technologies and Assembly Methods in Different Time Segments of the Bacterial Surveillance and RefSeq Genome Databases
  • 2020
  • Ingår i: Frontiers in Cellular and Infection Microbiology. - : FRONTIERS MEDIA SA. - 2235-2988. ; 10
  • Forskningsöversikt (refereegranskat)abstract
    • Whole genome sequencing has become a powerful tool in modern microbiology. Especially bacterial genomes are sequenced in high numbers. Whole genome sequencing is not only used in research projects, but also in surveillance projects and outbreak investigations. Many whole genome analysis workflows begins with the production of a genome assembly. To accomplish this, a number of different sequencing technologies and assembly methods are available. Here, a summarization is provided over the most frequently used sequence technology and genome assembly approaches reported for the bacterial RefSeq genomes and for the bacterial genomes submitted as belonging to a surveillance project. The data is presented both in total and broken up on a per year basis. Information associated with over 400,000 publically available genomes dated April 2020 and prior were used. The information summarized include (i) the most frequently used sequencing technologies, (ii) the most common combinations of sequencing technologies, (iii) the most reported sequencing depth, and (iv) the most frequently used assembly software solutions. In all, this mini review provides an overview of the currently most common workflows for producing bacterial whole genome sequence assemblies.
  •  
4.
  • Westergren Jakobsson, Amanda, et al. (författare)
  • The Human Adenovirus 2 Transcriptome : An Amazing Complexity of Alternatively Spliced mRNAs
  • 2021
  • Ingår i: Journal of Virology. - : American Society for Microbiology. - 0022-538X .- 1098-5514. ; 95:4
  • Tidskriftsartikel (refereegranskat)abstract
    • We have used the Nanopore long-read sequencing platform to demonstrate how amazingly complex the human adenovirus type 2 (Ad2) transcriptome is with a flexible splicing machinery producing a range of novel mRNAs both from the early and late transcription units. In total we report more than 900 alternatively spliced mRNAs produced from the Ad2 transcriptome whereof more than 850 are novel mRNAs. A surprising finding was that more than 50% of all E1A transcripts extended upstream of the previously defined transcriptional start site. The novel start sites mapped close to the inverted terminal repeat (ITR) and within the E1A enhancer region. We speculate that novel promoters or enhancer driven transcription, so-called eRNA transcription, is responsible for producing these novel mRNAs. Their existence was verified by a peptide in the Ad2 proteome that was unique for the E1A ITR mRNA. Although we show a high complexity of alternative splicing from most early and late regions, the E3 region was by far the most complex when expressed at late times of infection. More than 400 alternatively spliced mRNAs were observed in this region alone. These mRNAs included extended L4 mRNAs containing E3 and L5 sequences and readthrough mRNAs combining E3 and L5 sequences. Our findings demonstrate that the virus has a remarkable capacity to produce novel exon combinations, which will offer the virus an evolutionary advantage to change the gene expression repertoire and protein production in an evolving environment.IMPORTANCE Work in the adenovirus system led to the groundbreaking discovery of RNA splicing and alternative RNA splicing in 1977. These mechanisms are essential in mammalian evolution by increasing the coding capacity of a genome. Here, we have used a long-read sequencing technology to characterize the complexity of human adenovirus pre-mRNA splicing in detail. It is mindboggling that the viral genome, which only houses around 36,000 bp, not being much larger than a single cellular gene, generates more than 900 alternatively spliced mRNAs. Recently, adenoviruses have been used as the backbone in several promising SARS-CoV-2 vaccines. Further improvement of adenovirus-based vaccines demands that the virus can be tamed into an innocent carrier of foreign genes. This requires a full understanding of the components that govern adenovirus replication and gene expression.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy