SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seidel M. F.) srt2:(2020-2023)"

Sökning: WFRF:(Seidel M. F.) > (2020-2023)

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Tabiri, S, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
2.
  • Bravo, L, et al. (författare)
  • 2021
  • swepub:Mat__t
  •  
3.
  • Khatri, C, et al. (författare)
  • Outcomes after perioperative SARS-CoV-2 infection in patients with proximal femoral fractures: an international cohort study
  • 2021
  • Ingår i: BMJ open. - : BMJ. - 2044-6055. ; 11:11, s. e050830-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies have demonstrated high rates of mortality in people with proximal femoral fracture and SARS-CoV-2, but there is limited published data on the factors that influence mortality for clinicians to make informed treatment decisions. This study aims to report the 30-day mortality associated with perioperative infection of patients undergoing surgery for proximal femoral fractures and to examine the factors that influence mortality in a multivariate analysis.SettingProspective, international, multicentre, observational cohort study.ParticipantsPatients undergoing any operation for a proximal femoral fracture from 1 February to 30 April 2020 and with perioperative SARS-CoV-2 infection (either 7 days prior or 30-day postoperative).Primary outcome30-day mortality. Multivariate modelling was performed to identify factors associated with 30-day mortality.ResultsThis study reports included 1063 patients from 174 hospitals in 19 countries. Overall 30-day mortality was 29.4% (313/1063). In an adjusted model, 30-day mortality was associated with male gender (OR 2.29, 95% CI 1.68 to 3.13, p<0.001), age >80 years (OR 1.60, 95% CI 1.1 to 2.31, p=0.013), preoperative diagnosis of dementia (OR 1.57, 95% CI 1.15 to 2.16, p=0.005), kidney disease (OR 1.73, 95% CI 1.18 to 2.55, p=0.005) and congestive heart failure (OR 1.62, 95% CI 1.06 to 2.48, p=0.025). Mortality at 30 days was lower in patients with a preoperative diagnosis of SARS-CoV-2 (OR 0.6, 95% CI 0.6 (0.42 to 0.85), p=0.004). There was no difference in mortality in patients with an increase to delay in surgery (p=0.220) or type of anaesthetic given (p=0.787).ConclusionsPatients undergoing surgery for a proximal femoral fracture with a perioperative infection of SARS-CoV-2 have a high rate of mortality. This study would support the need for providing these patients with individualised medical and anaesthetic care, including medical optimisation before theatre. Careful preoperative counselling is needed for those with a proximal femoral fracture and SARS-CoV-2, especially those in the highest risk groups.Trial registration numberNCT04323644
  •  
4.
  • Hamaus, N., et al. (författare)
  • Euclid : Forecasts from redshift-space distortions and the Alcock-Paczynski test with cosmic voids
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 658
  • Tidskriftsartikel (refereegranskat)abstract
    • Euclid is poised to survey galaxies across a cosmological volume of unprecedented size, providing observations of more than a billion objects distributed over a third of the full sky. Approximately 20 million of these galaxies will have their spectroscopy available, allowing us to map the three-dimensional large-scale structure of the Universe in great detail. This paper investigates prospects for the detection of cosmic voids therein and the unique benefit they provide for cosmological studies. In particular, we study the imprints of dynamic (redshift-space) and geometric (Alcock-Paczynski) distortions of average void shapes and their constraining power on the growth of structure and cosmological distance ratios. To this end, we made use of the Flagship mock catalog, a state-of-the-art simulation of the data expected to be observed with Euclid. We arranged the data into four adjacent redshift bins, each of which contains about 11000 voids and we estimated the stacked void-galaxy cross-correlation function in every bin. Fitting a linear-theory model to the data, we obtained constraints on f/b and DMH, where f is the linear growth rate of density fluctuations, b the galaxy bias, D-M the comoving angular diameter distance, and H the Hubble rate. In addition, we marginalized over two nuisance parameters included in our model to account for unknown systematic effects in the analysis. With this approach, Euclid will be able to reach a relative precision of about 4% on measurements of f/b and 0.5% on DMH in each redshift bin. Better modeling or calibration of the nuisance parameters may further increase this precision to 1% and 0.4%, respectively. Our results show that the exploitation of cosmic voids in Euclid will provide competitive constraints on cosmology even as a stand-alone probe. For example, the equation-of-state parameter, w, for dark energy will be measured with a precision of about 10%, consistent with previous more approximate forecasts.
  •  
5.
  • Contarini, S., et al. (författare)
  • Euclid : cosmological forecasts from the void size function
  • 2022
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 667
  • Tidskriftsartikel (refereegranskat)abstract
    • The Euclid mission - with its spectroscopic galaxy survey covering a sky area over 15 000 deg(2) in the redshift range 0.9 < z < 1.8 - will provide a sample of tens of thousands of cosmic voids. This paper thoroughly explores for the first time the constraining power of the void size function on the properties of dark energy (DE) from a survey mock catalogue, the official Euclid Flagship simulation. We identified voids in the Flagship light-cone, which closely matches the features of the upcoming Euclid spectroscopic data set. We modelled the void size function considering a state-of-the art methodology: we relied on the volume-conserving (Vdn) model, a modification of the popular Sheth & van de Weygaert model for void number counts, extended by means of a linear function of the large-scale galaxy bias. We found an excellent agreement between model predictions and measured mock void number counts. We computed updated forecasts for the Euclid mission on DE from the void size function and provided reliable void number estimates to serve as a basis for further forecasts of cosmological applications using voids. We analysed two different cosmological models for DE: the first described by a constant DE equation of state parameter, w, and the second by a dynamic equation of state with coefficients w(0) and w(a). We forecast 1 sigma errors on w lower than 10% and we estimated an expected figure of merit (FoM) for the dynamical DE scenario FoM(w0,wa) = 17 when considering only the neutrino mass as additional free parameter of the model. The analysis is based on conservative assumptions to ensure full robustness, and is a pathfinder for future enhancements of the technique. Our results showcase the impressive constraining power of the void size function from the Euclid spectroscopic sample, both as a stand-alone probe, and to be combined with other Euclid cosmological probes.
  •  
6.
  • Pöntinen, M., et al. (författare)
  • Euclid: Identification of asteroid streaks in simulated images using deep learning
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 679
  • Tidskriftsartikel (refereegranskat)abstract
    • The material composition of asteroids is an essential piece of knowledge in the quest to understand the formation and evolution of the Solar System. Visual to near-infrared spectra or multiband photometry is required to constrain the material composition of asteroids, but we currently have such data, especially in the near-infrared wavelengths, for only a limited number of asteroids. This is a significant limitation considering the complex orbital structures of the asteroid populations. Up to 150 000 asteroids will be visible in the images of the upcoming ESA Euclid space telescope, and the instruments of Euclid will offer multiband visual to near-infrared photometry and slitless near-infrared spectra of these objects. Most of the asteroids will appear as streaks in the images. Due to the large number of images and asteroids, automated detection methods are needed. A non-machine-learning approach based on the Streak Det software was previously tested, but the results were not optimal for short and/or faint streaks. We set out to improve the capability to detect asteroid streaks in Euclid images by using deep learning. We built, trained, and tested a three-step machine-learning pipeline with simulated Euclid images. First, a convolutional neural network (CNN) detected streaks and their coordinates in full images, aiming to maximize the completeness (recall) of detections. Then, a recurrent neural network (RNN) merged snippets of long streaks detected in several parts by the CNN. Lastly, gradient-boosted trees (XGBoost) linked detected streaks between different Euclid exposures to reduce the number of false positives and improve the purity (precision) of the sample. The deep-learning pipeline surpasses the completeness and reaches a similar level of purity of a non-machine-learning pipeline based on the StreakDet software. Additionally, the deep-learning pipeline can detect asteroids 0.25–0.5 magnitudes fainter than StreakDet. The deep-learning pipeline could result in a 50% increase in the number of detected asteroids compared to the StreakDet software. There is still scope for further refinement, particularly in improving the accuracy of streak coordinates and enhancing the completeness of the final stage of the pipeline, which involves linking detections across multiple exposures.
  •  
7.
  • Nielsen, L. D., et al. (författare)
  • Mass determinations of the three mini-Neptunes transiting TOI-125
  • 2020
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 492:4, s. 5399-5412
  • Tidskriftsartikel (refereegranskat)abstract
    • The Transiting Exoplanet Survey Satellite, TESS, is currently carrying out an all-sky search for small planets transiting bright stars. In the first year of the TESS survey, a steady progress was made in achieving the mission's primary science goal of establishing bulk densities for 50 planets smaller than Neptune. During that year, the TESS's observations were focused on the southern ecliptic hemisphere, resulting in the discovery of three mini-Neptunes orbiting the star T01-125, a V = 11,0 KO dwarf. We present intensive HARPS radial velocity observations, yielding precise mass measurements for TO1-125b, TOI-125c, and TOI-125d. TOI-125b has an orbital period of 4,65 d, a radius of 2,726 + 0,075 RE, a mass of 9,50 0,88 ME, and is near the 2:1 mean motion resonance with TOI-125c at 9.15 d. TOI-125c has a similar radius of 2,759 0.10 RE and a mass of 6,63 + 0,99 ME, being the puffiest of the three planets. T01-125d has an orbital period of 19,98 d and a radius of 2.93 + 0,17 RE and mass 13,6 1,2 ME, For T01-125b and d, we find unusual high eccentricities of 0.19 0.04 and 0.17+(c):(!,(, respectively. Our analysis also provides upper mass limits for the two low-SNR planet candidates in the system; for T01-125.04 (Rp = 1.36 RE, P = 0.53 d), we find a 2a upper mass limit of 1.6 ME, whereas T01-125.05 (RP = 4.2-'2E44 RE, P = 13.28 d) is unlikely a viable planet candidate with an upper mass limit of 2.7 ME. We discuss the internal structure of the three confirmed planets, as well as dynamical stability and system architecture for this intriguing exoplanet system.
  •  
8.
  • Bernardi, G., et al. (författare)
  • The Future Circular Collider : a Summary for the US 2021 Snowmass Process
  • 2022
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • In this white paper for the 2021 Snowmass process, we give a description of the proposed Future Circular Collider (FCC) project and its physics program. The paper summarizes and updates the discussion submitted to the European Strategy on Particle Physics. After construction of an approximately 90 km tunnel, an electron-positron collider based on established technologies allows world-record instantaneous luminosities at center-of-mass energies from the Z resonance up to tt thresholds, enabling a rich set of fundamental measurements including Higgs couplings determinations at the sub percent level, precision tests of the weak and strong forces, and searches for new particles, including dark matter, both directly and via virtual corrections or mixing. Among other possibilities, the FCC-ee will be able to (i) indirectly discover new particles coupling to the Higgs and/or electroweak bosons up to scales around 7 and 50 TeV, respectively; (ii) perform competitive SUSY tests at the loop level in regions not accessible at the LHC; (iii) study heavy-flavor and tau physics in ultra-rare decays beyond the LHC reach, and (iv) achieve the best potential in direct collider searches for dark matter, sterile neutrinos, and axion-like particles with masses up to around 90 GeV. The tunnel can then be reused for a proton-proton collider, establishing record center-of-mass collision energy, allowing unprecedented reach for direct searches for new particles up to the around 50 TeV scale, and a diverse program of measurements of the Standard Model and Higgs boson, including a precision measurement of the Higgs self-coupling, and conclusively testing weakly-interacting massive particle scenarios of thermal relic dark matter.
  •  
9.
  • Schwab, M. B., et al. (författare)
  • Visualization of relativistic laser pulses in underdense plasma
  • 2020
  • Ingår i: Physical Review Accelerators and Beams. - 2469-9888. ; 23:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present experimental evidence of relativistic electron-cyclotron resonances (RECRs) in the vicinity of the relativistically intense pump laser of a laser wakefield accelerator (LWFA). The effects of the RECRs are visualized by imaging the driven plasma wave with a few-cycle, optical probe in transverse geometry. The probe experiences strong, spectrally dependent and relativistically modified birefringence in the vicinity of the pump that arises due to the plasma electrons' relativistic motion in the pump's electromagnetic fields. The spectral birefringence is strongly dependent on the local magnetic field distribution of the pump laser. Analysis and comparison to both 2D and 3D particle-in-cell simulations confirm the origin of the RECR effect and its appearance in experimental and simulated shadowgrams of the laser-plasma interaction. The RECR effect is relevant for any relativistic, magnetized plasma and in the case of LWFA could provide a nondestructive, in situ diagnostic for tracking the evolution of the pump's intensity distribution with propagation through tenuous plasma.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy