SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Seneviratne Sonia I.) srt2:(2020-2024)"

Sökning: WFRF:(Seneviratne Sonia I.) > (2020-2024)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Treydte, Kerstin, et al. (författare)
  • Recent human-induced atmospheric drying across Europe unprecedented in the last 400 years
  • 2024
  • Ingår i: NATURE GEOSCIENCE. - 1752-0894 .- 1752-0908. ; 17, s. 58-65
  • Tidskriftsartikel (refereegranskat)abstract
    • The vapor pressure deficit reflects the difference between how much moisture the atmosphere could and actually does hold, a factor that fundamentally affects evapotranspiration, ecosystem functioning, and vegetation carbon uptake. Its spatial variability and long-term trends under natural versus human-influenced climate are poorly known despite being essential for predicting future effects on natural ecosystems and human societies such as crop yield, wildfires, and health. Here we combine regionally distinct reconstructions of pre-industrial summer vapor pressure deficit variability from Europe's largest oxygen-isotope network of tree-ring cellulose with observational records and Earth system model simulations with and without human forcing included. We demonstrate that an intensification of atmospheric drying during the recent decades across different European target regions is unprecedented in a pre-industrial context and that it is attributed to human influence with more than 98% probability. The magnitude of this trend is largest in Western and Central Europe, the Alps and Pyrenees region, and the smallest in southern Fennoscandia. In view of the extreme drought and compound events of the recent years, further atmospheric drying poses an enhanced risk to vegetation, specifically in the densely populated areas of the European temperate lowlands. The atmosphere has dried across most regions of Europe in recent decades, a trend that can be attributed primarily to human impacts, according to tree ring records spanning 400 years and Earth system model simulations.
  •  
2.
  • Grant, Luke, et al. (författare)
  • Attribution of global lake systems change to anthropogenic forcing
  • 2021
  • Ingår i: Nature Geoscience. - : Springer Nature. - 1752-0894 .- 1752-0908. ; 14:11, s. 849-854
  • Tidskriftsartikel (refereegranskat)abstract
    • Lake ecosystems are jeopardized by the impacts of climate change on ice seasonality and water temperatures. Yet historical simulations have not been used to formally attribute changes in lake ice and temperature to anthropogenic drivers. In addition, future projections of these properties are limited to individual lakes or global simulations from single lake models. Here we uncover the human imprint on lakes worldwide using hindcasts and projections from five lake models. Reanalysed trends in lake temperature and ice cover in recent decades are extremely unlikely to be explained by pre-industrial climate variability alone. Ice-cover trends in reanalysis are consistent with lake model simulations under historical conditions, providing attribution of lake changes to anthropogenic climate change. Moreover, lake temperature, ice thickness and duration scale robustly with global mean air temperature across future climate scenarios (+0.9 °C °Cair–1, –0.033 m °Cair–1 and –9.7 d °Cair–1, respectively). These impacts would profoundly alter the functioning of lake ecosystems and the services they provide.
  •  
3.
  • Luo, Fei, et al. (författare)
  • Summertime Rossby waves in climate models : Substantial biases in surface imprint associated with small biases in upper-level circulation
  • 2022
  • Ingår i: Weather and Climate Dynamics. - : Copernicus GmbH. - 2698-4016. ; 3:3, s. 905-935
  • Tidskriftsartikel (refereegranskat)abstract
    • In boreal summer, circumglobal Rossby waves can promote stagnating weather systems that favor extreme events like heat waves or droughts. Recent work showed that amplified Rossby wavenumber 5 and 7 show phase-locking behavior which can trigger simultaneous warm anomalies in different breadbasket regions in the Northern Hemisphere. These types of wave patterns thus pose a potential threat to human health and ecosystems. The representation of such persistent wave events in summer and their surface anomalies in general circulation models (GCMs) has not been systematically analyzed. Here we validate the representation of wavenumbers 1-10 in three state-of-The-Art global climate models (EC-Earth, CESM, and MIROC), quantify their biases, and provide insights into the underlying physical reasons for the biases. To do so, the ExtremeX experiments output data were used, consisting of (1) historic simulations with a freely running atmosphere with prescribed ocean and experiments that additionally (2) nudge towards the observed upper-level horizontal winds, (3) prescribe soil moisture conditions, or (4) do both. The experiments are used to trace the sources of the model biases to either the large-scale atmospheric circulation or surface feedback processes. Focusing on wave 5 and wave 7, we show that while the wave's position and magnitude are generally well represented during high-Amplitude (>g 1.5 SD) episodes, the associated surface anomalies are substantially underestimated. Near-surface temperature, precipitation and mean sea level pressure are typically underestimated by a factor of 1.5 in terms of normalized standard deviations. The correlations and normalized standard deviations for surface anomalies do not improve if the soil moisture is prescribed. However, the surface biases are almost entirely removed when the upper-level atmospheric circulation is nudged. When both prescribing soil moisture and nudging the upper-level atmosphere, then the surface biases remain quite similar to the experiment with a nudged atmosphere only. We conclude that the near-surface biases in temperature and precipitation are in the first place related to biases in the upper-level circulation. Thus, relatively small biases in the models' representation of the upper-level waves can strongly affect associated temperature and precipitation anomalies.
  •  
4.
  • Wehrli, Kathrin, et al. (författare)
  • The ExtremeX global climate model experiment : investigating thermodynamic and dynamic processes contributing to weather and climate extremes
  • 2022
  • Ingår i: Earth System Dynamics. - : Copernicus GmbH. - 2190-4979 .- 2190-4987. ; 13:3, s. 1167-1196
  • Tidskriftsartikel (refereegranskat)abstract
    • The mechanisms leading to the occurrence of extreme weather and climate events are varied and complex. They generally encompass a combination of dynamic and thermodynamic processes, as well as drivers external to the climate system, such as anthropogenic greenhouse gas emissions and land use change. Here we present the ExtremeX multi-model intercomparison experiment, which was designed to investigate the contribution of dynamic and thermodynamic processes to recent weather and climate extremes. The numerical experiments are performed with three Earth system models: CESM, MIROC, and EC-Earth. They include control experiments with interactive atmosphere and land surface conditions, as well as experiments wherein the atmospheric circulation, soil moisture, or both are constrained using observation-based data. The temporal evolution and magnitude of temperature anomalies during heatwaves are well represented in the experiments with a constrained atmosphere. However, the magnitude of mean climatological biases in temperature and precipitation are not greatly reduced in any of the constrained experiments due to persistent or newly introduced biases. This highlights the importance of error compensations and tuning in the standard model versions. To show one possible application, ExtremeX is used to identify the main drivers of heatwaves and warm spells. The results reveal that both atmospheric circulation patterns and soil moisture conditions substantially contribute to the occurrence of these events. Soil moisture effects are particularly important in the tropics, the monsoon areas, and the Great Plains of the United States, whereas atmospheric circulation effects are major drivers in other midlatitude and high-latitude regions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy