SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sethi S) srt2:(2010-2014)"

Sökning: WFRF:(Sethi S) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Singh, Purnima, et al. (författare)
  • High-spin spectroscopy of I-122
  • 2012
  • Ingår i: Physical Review C (Nuclear Physics). - 0556-2813. ; 85:5
  • Tidskriftsartikel (refereegranskat)abstract
    • High-spin states in I-122 have been investigated using the Cd-116(B-11,5n)I-122 reaction at a beam energy of 65 MeV and gamma-ray coincidence events were recorded with the INGA spectrometer. The level scheme of I-122 has been extended up to spin I = 30. Experimental features, such as band-crossing frequencies, aligned angular momenta, signature splitting, and B(M1)/B(E2) ratios have been used for configuration assignments to low-energy band structures. Maximally aligned states involving all eight particles outside the Sn-114 core and states with one particle antialigned have been identified. Cranked Nilsson-Strutinsky calculations have been used to interpret high-spin structures.
  •  
2.
  • Kyprianidis, Konstantinos, et al. (författare)
  • Uncertainty in gas turbine thermo-fluid modelling and its impact on performance calculations and emissions predictions at aircraft system level
  • 2012
  • Ingår i: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering. - : SAGE Publications. - 0954-4100 .- 2041-3025. ; 226:2, s. 163-181
  • Tidskriftsartikel (refereegranskat)abstract
    • In this article, various aspects of thermo-fluid modelling for gas turbines are described and the impact on performance calculations and emissions predictions at aircraft system level is assessed. Accurate and reliable fluid modelling is essential for any gas turbine performance simulation software as it provides a robust foundation for building advanced multi-disciplinary modelling capabilities. Caloric properties for generic and semi-generic gas turbine performance simulation codes can be calculated at various levels of fidelity; selection of the fidelity level is dependent upon the objectives of the simulation and execution time constraints. However, rigorous fluid modelling may not necessarily improve performance simulation accuracy unless all modelling assumptions and sources of uncertainty are aligned to the same level.A comprehensive analysis of thermo-fluid modelling for gas turbines is presented, and the fluid models developed are discussed in detail. Common technical models, used for calculating caloric properties, are compared while typical assumptions made in fluid modelling, and the uncertainties induced, are examined. Several analyses, which demonstrate the effects of composition, temperature, and pressure on caloric properties of working media for gas turbines, are presented. The working media examined include dry air and combustion products for various fuels and H/C ratios. The uncertainty induced in calculations by (a) using common technical models for evaluating fluid caloric properties and (b) ignoring dissociation effects is examined at three different levels: (i) component level, (ii) engine level, and (iii) aircraft system level. An attempt is made to shed light on the trade-off between improving the accuracy of a fluid model and the accuracy of a multi-disciplinary simulation at aircraft system level, against computational time penalties. The validity of the ideal gas assumption for future turbofan engines and novel propulsion cycles is discussed. The results obtained demonstrate that accurate modelling of the working fluid is essential, especially for assessing novel and/or aggressive cycles at aircraft system level. Where radical design space exploration is concerned, improving the accuracy of the fluid model will need to be carefully balanced with the computational time penalties involved.
  •  
3.
  • Lagathu, C., et al. (författare)
  • Secreted frizzled-related protein 1 regulates adipose tissue expansion and is dysregulated in severe obesity.
  • 2010
  • Ingår i: International Journal of Obesity. - London, United Kingdom : Nature Publishing Group. - 0307-0565 .- 1476-5497. ; 34:12, s. 1695-1705
  • Tidskriftsartikel (refereegranskat)abstract
    • AIM: The Wnt/β-catenin signaling network offers potential targets to diagnose and uncouple obesity from its metabolic complications. In this study, we investigate the role of the Wnt antagonist, secreted frizzled-related protein 1 (SFRP1), in promoting adipogenesis in vitro and adipose tissue expansion in vivo.METHODS: We use a combination of human and murine, in vivo and in vitro models of adipogenesis, adipose tissue expansion and obesity-related metabolic syndrome to profile the involvement of SFRP1.RESULTS: SFRP1 is expressed in both murine and human mature adipocytes. The expression of SFRP1 is induced during in vitro adipogenesis, and SFRP1 is preferentially expressed in mature adipocytes in human adipose tissue. Constitutive ectopic expression of SFRP1 is proadipogenic and inhibits the Wnt/β-catenin signaling pathway. In vivo endogenous levels of adipose SFRP1 are regulated in line with proadipogenic states. However, in longitudinal studies of high-fat-diet-fed mice, we observed a dynamic temporal but biphasic regulation of endogenous SFRP1. In agreement with this profile, we observed that SFRP1 expression in human tissues peaks in patients with mild obesity and gradually falls in morbidly obese subjects.CONCLUSIONS: Our results suggest that SFRP1 is an endogenous modulator of Wnt/β-catenin signaling and participates in the paracrine regulation of human adipogenesis. The reduced adipose expression of SFRP1 in morbid obesity and its knock-on effect to prevent further adipose tissue expansion may contribute to the development of metabolic complications in these individuals.
  •  
4.
  • Liu, Bing, et al. (författare)
  • A Computational and Experimental Study of the Regulatory Mechanisms of the Complement System
  • 2011
  • Ingår i: PLoS Computational Biology. - : Public Library of Science (PLoS). - 1553-7358. ; 70:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The complement system is key to innate immunity and its activation is necessary for the clearance of bacteria and apoptotic cells. However, insufficient or excessive complement activation will lead to immune-related diseases. It is so far unknown how the complement activity is up- or down-regulated and what the associated pathophysiological mechanisms are. To quantitatively understand the modulatory mechanisms of the complement system, we built a computational model involving the enhancement and suppression mechanisms that regulate complement activity. Our model consists of a large system of Ordinary Differential Equations (ODEs) accompanied by a dynamic Bayesian network as a probabilistic approximation of the ODE dynamics. Applying Bayesian inference techniques, this approximation was used to perform parameter estimation and sensitivity analysis. Our combined computational and experimental study showed that the antimicrobial response is sensitive to changes in pH and calcium levels, which determines the strength of the crosstalk between CRP and L-ficolin. Our study also revealed differential regulatory effects of C4BP. While C4BP delays but does not decrease the classical complement activation, it attenuates but does not significantly delay the lectin pathway activation. We also found that the major inhibitory role of C4BP is to facilitate the decay of C3 convertase. In summary, the present work elucidates the regulatory mechanisms of the complement system and demonstrates how the bio-pathway machinery maintains the balance between activation and inhibition. The insights we have gained could contribute to the development of therapies targeting the complement system.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy