SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shaffer C) srt2:(2020-2024)"

Sökning: WFRF:(Shaffer C) > (2020-2024)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Winkler, TW, et al. (författare)
  • Differential and shared genetic effects on kidney function between diabetic and non-diabetic individuals
  • 2022
  • Ingår i: Communications biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 5:1, s. 580-
  • Tidskriftsartikel (refereegranskat)abstract
    • Reduced glomerular filtration rate (GFR) can progress to kidney failure. Risk factors include genetics and diabetes mellitus (DM), but little is known about their interaction. We conducted genome-wide association meta-analyses for estimated GFR based on serum creatinine (eGFR), separately for individuals with or without DM (nDM = 178,691, nnoDM = 1,296,113). Our genome-wide searches identified (i) seven eGFR loci with significant DM/noDM-difference, (ii) four additional novel loci with suggestive difference and (iii) 28 further novel loci (including CUBN) by allowing for potential difference. GWAS on eGFR among DM individuals identified 2 known and 27 potentially responsible loci for diabetic kidney disease. Gene prioritization highlighted 18 genes that may inform reno-protective drug development. We highlight the existence of DM-only and noDM-only effects, which can inform about the target group, if respective genes are advanced as drug targets. Largely shared effects suggest that most drug interventions to alter eGFR should be effective in DM and noDM.
  •  
2.
  •  
3.
  • Chen, H.Y., et al. (författare)
  • Dyslipidemia, inflammation, calcification, and adiposity in aortic stenosis: a genome-wide study
  • 2023
  • Ingår i: European Heart Journal. - : Oxford University Press. - 0195-668X .- 1522-9645. ; 44:21, s. 1927-1939
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims Although highly heritable, the genetic etiology of calcific aortic stenosis (AS) remains incompletely understood. The aim of this study was to discover novel genetic contributors to AS and to integrate functional, expression, and cross-phenotype data to identify mechanisms of AS. Methods and results A genome-wide meta-analysis of 11.6 million variants in 10 cohorts involving 653 867 European ancestry participants (13 765 cases) was performed. Seventeen loci were associated with AS at P ≤ 5 × 10−8, of which 15 replicated in an independent cohort of 90 828 participants (7111 cases), including CELSR2–SORT1, NLRP6, and SMC2. A genetic risk score comprised of the index variants was associated with AS [odds ratio (OR) per standard deviation, 1.31; 95% confidence interval (CI), 1.26–1.35; P = 2.7 × 10−51] and aortic valve calcium (OR per standard deviation, 1.22; 95% CI, 1.08–1.37; P = 1.4 × 10−3), after adjustment for known risk factors. A phenome-wide association study indicated multiple associations with coronary artery disease, apolipoprotein B, and triglycerides. Mendelian randomization supported a causal role for apolipoprotein B-containing lipoprotein particles in AS (OR per g/L of apolipoprotein B, 3.85; 95% CI, 2.90–5.12; P = 2.1 × 10−20) and replicated previous findings of causality for lipoprotein(a) (OR per natural logarithm, 1.20; 95% CI, 1.17–1.23; P = 4.8 × 10−73) and body mass index (OR per kg/m2, 1.07; 95% CI, 1.05–1.9; P = 1.9 × 10−12). Colocalization analyses using the GTEx database identified a role for differential expression of the genes LPA, SORT1, ACTR2, NOTCH4, IL6R, and FADS. Conclusion Dyslipidemia, inflammation, calcification, and adiposity play important roles in the etiology of AS, implicating novel treatments and prevention strategies. © The Author(s) 2023. Published by Oxford University Press on behalf of the European Society of Cardiology.
  •  
4.
  • Gorski, Mathias, et al. (författare)
  • Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies
  • 2022
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 102:3, s. 624-639
  • Tidskriftsartikel (refereegranskat)abstract
    • Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genomewide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR- baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant- by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with agedependency of genetic cross- section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in- silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03- 1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
  •  
5.
  •  
6.
  • Chen, Hao Yu, et al. (författare)
  • Association of FADS1/2 Locus Variants and Polyunsaturated Fatty Acids With Aortic Stenosis
  • 2020
  • Ingår i: JAMA cardiology. - : American Medical Association (AMA). - 2380-6583 .- 2380-6591. ; 5:6, s. 694-702
  • Tidskriftsartikel (refereegranskat)abstract
    • Importance: Aortic stenosis (AS) has no approved medical treatment. Identifying etiological pathways for AS could identify pharmacological targets.Objective: To identify novel genetic loci and pathways associated with AS.Design, Setting, and Participants: This genome-wide association study used a case-control design to evaluate 44 703 participants (3469 cases of AS) of self-reported European ancestry from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort (from January 1, 1996, to December 31, 2015). Replication was performed in 7 other cohorts totaling 256 926 participants (5926 cases of AS), with additional analyses performed in 6942 participants from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium. Follow-up biomarker analyses with aortic valve calcium (AVC) were also performed. Data were analyzed from May 1, 2017, to December 5, 2019.Exposures: Genetic variants (615 643 variants) and polyunsaturated fatty acids (ω-6 and ω-3) measured in blood samples.Main Outcomes and Measures: Aortic stenosis and aortic valve replacement defined by electronic health records, surgical records, or echocardiography and the presence of AVC measured by computed tomography.Results: The mean (SD) age of the 44 703 GERA participants was 69.7 (8.4) years, and 22 019 (49.3%) were men. The rs174547 variant at the FADS1/2 locus was associated with AS (odds ratio [OR] per C allele, 0.88; 95% CI, 0.83-0.93; P = 3.0 × 10-6), with genome-wide significance after meta-analysis with 7 replication cohorts totaling 312 118 individuals (9395 cases of AS) (OR, 0.91; 95% CI, 0.88-0.94; P = 2.5 × 10-8). A consistent association with AVC was also observed (OR, 0.91; 95% CI, 0.83-0.99; P = .03). A higher ratio of arachidonic acid to linoleic acid was associated with AVC (OR per SD of the natural logarithm, 1.19; 95% CI, 1.09-1.30; P = 6.6 × 10-5). In mendelian randomization, increased FADS1 liver expression and arachidonic acid were associated with AS (OR per unit of normalized expression, 1.31 [95% CI, 1.17-1.48; P = 7.4 × 10-6]; OR per 5-percentage point increase in arachidonic acid for AVC, 1.23 [95% CI, 1.01-1.49; P = .04]; OR per 5-percentage point increase in arachidonic acid for AS, 1.08 [95% CI, 1.04-1.13; P = 4.1 × 10-4]).Conclusions and Relevance: Variation at the FADS1/2 locus was associated with AS and AVC. Findings from biomarker measurements and mendelian randomization appear to link ω-6 fatty acid biosynthesis to AS, which may represent a therapeutic target.
  •  
7.
  • Gorski, Mathias, et al. (författare)
  • Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline
  • 2021
  • Ingår i: Kidney International. - : Elsevier. - 0085-2538 .- 1523-1755. ; 99:4, s. 926-939
  • Tidskriftsartikel (refereegranskat)abstract
    • Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m2/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m2 at follow-up among those with eGFRcrea 60 mL/min/1.73m2 or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
  •  
8.
  • Loryan, Irena, Associate Professor (Docent), 1977-, et al. (författare)
  • Unbound Brain-to-Plasma Partition Coefficient, K-p,K-uu,K-brain-a Game Changing Parameter for CNS Drug Discovery and Development
  • 2022
  • Ingår i: Pharmaceutical research. - : Springer Nature. - 0724-8741 .- 1573-904X. ; 39:7, s. 1321-1341
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose More than 15 years have passed since the first description of the unbound brain-to-plasma partition coefficient (K-p,K-uu,K-brain) by Prof. Margareta Hammarlund-Udenaes, which was enabled by advancements in experimental methodologies including cerebral microdialysis. Since then, growing knowledge and data continue to support the notion that the unbound (free) concentration of a drug at the site of action, such as the brain, is the driving force for pharmacological responses. Towards this end, K-p,K-uu,K-brain is the key parameter to obtain unbound brain concentrations from unbound plasma concentrations. Methods To understand the importance and impact of the K-p,K-uu,K-brain concept in contemporary drug discovery and development, a survey has been conducted amongst major pharmaceutical companies based in Europe and the USA. Here, we present the results from this survey which consisted of 47 questions addressing: 1) Background information of the companies, 2) Implementation, 3) Application areas, 4) Methodology, 5) Impact and 6) Future perspectives. Results and conclusions From the responses, it is clear that the majority of the companies (93%) has established a common understanding across disciplines of the concept and utility of K-p,K-uu,K-brain as compared to other parameters related to brain exposure. Adoption of the K-p,K-uu,K-brain concept has been mainly driven by individual scientists advocating its application in the various companies rather than by a top-down approach. Remarkably, 79% of all responders describe the portfolio impact of K-p,K-uu,K-brain implementation in their companies as 'game-changing'. Although most companies (74%) consider the current toolbox for K-p,K-uu,K-brain assessment and its validation satisfactory for drug discovery and early development, areas of improvement and future research to better understand human brain pharmacokinetics/pharmacodynamics translation have been identified.
  •  
9.
  • Sheen, Justin K., et al. (författare)
  • The required size of cluster randomized trials of nonpharmaceutical interventions in epidemic settings
  • 2022
  • Ingår i: Statistics in Medicine. - : Wiley. - 0277-6715 .- 1097-0258. ; 41:13, s. 2466-2482
  • Tidskriftsartikel (refereegranskat)abstract
    • To control the SARS-CoV-2 pandemic and future pathogen outbreaks requires an understanding of which nonpharmaceutical interventions are effective at reducing transmission. Observational studies, however, are subject to biases that could erroneously suggest an impact on transmission, even when there is no true effect. Cluster randomized trials permit valid hypothesis tests of the effect of interventions on community transmission. While such trials could be completed in a relatively short period of time, they might require large sample sizes to achieve adequate power. However, the sample sizes required for such tests in outbreak settings are largely undeveloped, leaving unanswered the question of whether these designs are practical. We develop approximate sample size formulae and simulation-based sample size methods for cluster randomized trials in infectious disease outbreaks. We highlight key relationships between characteristics of transmission and the enrolled communities and the required sample sizes, describe settings where trials powered to detect a meaningful true effect size may be feasible, and provide recommendations for investigators in planning such trials. The approximate formulae and simulation banks may be used by investigators to quickly assess the feasibility of a trial, followed by more detailed methods to more precisely size the trial. For example, we show that community-scale trials requiring 220 clusters with 100 tested individuals per cluster are powered to identify interventions that reduce transmission by 40% in one generation interval, using parameters identified for SARS-CoV-2 transmission. For more modest treatment effects, or when transmission is extremely overdispersed, however, much larger sample sizes are required.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy