SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharba Sinan) srt2:(2022)"

Sökning: WFRF:(Sharba Sinan) > (2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Benktander, John, et al. (författare)
  • Aeromonas salmonicida binds α2-6 linked sialic acid, which is absent among the glycosphingolipid repertoires from skin, gill, stomach, pyloric caecum, and intestine
  • 2022
  • Ingår i: Virulence. - : Informa UK Limited. - 2150-5594 .- 2150-5608. ; 13:1, s. 1741-1751
  • Tidskriftsartikel (refereegranskat)abstract
    • Carbohydrates can both protect against infection and act as targets promoting infection. Mucins are major components of the slimy mucus layer covering the fish epithelia. Mucins can act as decoys for intimate pathogen interaction with the host afforded by binding to glycosphingolipids in the host cell membrane. We isolated and characterized glycosphingolipids from Atlantic salmon skin, gill, stomach, pyloric caeca, and intestine. We characterized the glycosphingolipids using liquid chromatography–mass spectrometry and tandem mass spectrometry and the glycan repertoire was compared with the glycan repertoire of mucins from the same epithelia. We also investigated Aeromonas salmonicida binding using chromatogram and microtiter well based binding assays. We identified 29 glycosphingolipids. All detected acid glycans were of the ganglio-series (unless shorter) and showed a high degree of polysialylation. The non-acid glycans were mostly composed of the neolacto, globo, and ganglio core structures. The glycosphingolipid repertoire differed between epithelia and the proportion of the terminal moieties of the glycosphingolipids did not reflect the terminal moieties on the mucins from the same epithelia. A. salmonicida did not bind the Atlantic salmon glycosphingolipids. Instead, we identified that A. salmonicida binding to sialic acid occurred to α2–6 Neu5Ac but not to α2–3 Neu5Ac. α2–6 Neu5Ac was present on mucins whereas mainly α2–3 Neu5Ac was found on the glycosphingolipids, explaining the difference in A. salmonicida binding ability between these host glycoconjugates. A. salmonicida´s ability to bind to Atlantic salmon mucins, but not the glycosphingolipids, is likely part of the host defence against this pathogen.
  •  
2.
  • Sharba, Sinan, et al. (författare)
  • Rainbow trout gastrointestinal mucus, mucin production, mucin glycosylation and response to lipopolysaccharide
  • 2022
  • Ingår i: Fish and Shellfish Immunology. - : Elsevier BV. - 1050-4648. ; 122, s. 181-190
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucus, whereof the highly glycosylated mucins are a major component, protects the epithelial mucosal surfaces. The aim of this study was to characterize the rainbow trout (Oncorhynchus mykiss) gastrointestinal mucus barrier function, mucin production, glycosylation and response to lipopolysaccharide. Both gastric and intestinal mucus was thick and impenetrable to bacteria-sized beads ex vivo. The secreted mucus covering the gastric epithelium predominantly contained sialylated mucins. Plume-like structures emerging from the gastric pits were both sialylated and fucosylated, indicating heterogeneity in gastric mucus secreted by the surface mucus cells and gland secretory cells, whereas intestinal mucus appeared more homogenous. In vivo metabolic mucin labelling revealed regional differences in mucin production and basal to apical transport, while lipopolysaccharide stimulation increased the rate of mucin production and basal to apical transport in both stomach and intestine. Using mass spectrometry, 34 mucin O-glycans were identified, with ∼70% of the relative abundance being sialylated, ∼40% di-sialylated and 20–25% fucosylated. No effects of lipopolysaccharide treatment were apparent regarding O-glycan repertoires, relative abundance of components, size distribution or core structures. Thus, the mucus production and organization differ between epithelial sites but provide a barrier to bacteria in both stomach and intestine. Furthermore, mucin production and basal to apical transport was stimulated by lipopolysaccharide in all regions, suggesting a mechanism to combat infections. © 2022
  •  
3.
  • Thomsson, Kristina A, 1969, et al. (författare)
  • Mucin O-glycosylation and pathogen binding ability differ between rainbow trout epithelial sites
  • 2022
  • Ingår i: Fish & Shellfish Immunology. - : Elsevier BV. - 1050-4648. ; 131, s. 349-357
  • Tidskriftsartikel (refereegranskat)abstract
    • Mucins are highly glycosylated proteins that make up the mucus covering internal and external surfaces of fish. Mucin O-glycans regulate pathogen quorum sensing, growth, virulence and attachment to the host. Knowledge on this mucosal defense system can enable alternative treatments to diseases posing a threat to productivity and welfare in aquaculture. Here, we characterize the rainbow trout (Oncorhynchus mykiss) gill, skin, pyloric ceca and distal intestinal mucin O-glycosylation and compare it to known teleost O-glycomes. We identified 54 O-glycans, consisting of up to nine monosaccharide residues. Skin glycans were most acidic, shortest on average and con-sisted mainly of NeuAc alpha 2-6GalNAc. Glycans from the gills were less acidic with predominantly core 1 and 2 glycans, whereas glycans from pyloric ceca and distal intestine expressed an increased number of core 5 glycans, distinctly decorated with NeuAc alpha 2-8NeuAc-like epitopes. When compared to Atlantic salmon and Arctic charr, trends on the core distribution, average size and overall acidity remained similar, although the epitopes varied. Rainbow trout mucins from gill and intestine bound A. salmonicida and A. hydrophila more efficiently than skin mucins. This is in line with a model where skin mucins with small glycans limit bacterial adhesion to the fish surface whereas the complex intestinal mucin glycans aid in trapping and removing pathogens from the epithelial surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy