SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sharma Priyanka) srt2:(2015-2019)"

Sökning: WFRF:(Sharma Priyanka) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Ruifu, et al. (författare)
  • Morphology and Flow Behavior of Cellulose Nanofibers Dispersed in Glycols
  • 2019
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 52:15, s. 5499-5509
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding the morphology and flow behavior of cellulose nanofibers (CNFs) dispersed in organic solvents can improve the process of fabricating new cellulose-based nanocomposites. In this study, jute-based 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized CNFs with two different charge densities (0.64 and 1.03 mmol/g) were dispersed in ethylene glycol (EG) and propylene glycol (PG) using the solvent exchange method. The morphology and dimensions of CNFs in dry and suspension states were characterized using transmission electron microscopy, atomic force microscopy, and small-angle X-ray scattering techniques. The results showed that the cross-sectional dimensions remained the same in different solvents. Rheological measurements revealed that CNF suspensions in water or glycol (EG and PG) behaved similar to typical polymer solutions with a solvent-independent overlap concentration corresponding to the crowding factor of about 14. Furthermore, a thixotropic behavior was found in the concentrated CNF/glycol systems as observed in typical CNF aqueous suspensions. The fact that TEMPO-oxidized CNFs can be well dispersed in organic solvents opens up new possibilities to improve the CNF–polymer matrix blending, where the use of a viscous solvent can delay the transition to turbulence in processing and improve the control of fiber orientation because of a slower Brownian diffusive motion.
  •  
2.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
3.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  •  
4.
  • Geng, Lihong, et al. (författare)
  • Structure characterization of cellulose nanofiber hydrogel as functions of concentration and ionic strength
  • 2017
  • Ingår i: Cellulose. - : Springer Netherlands. - 0969-0239 .- 1572-882X. ; 24:12, s. 5417-5429
  • Tidskriftsartikel (refereegranskat)abstract
    • Carboxylated cellulose nanofibers (CNFs), having an average width of 7 nm and thickness of 1.5 nm, were produced by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation method. The fiber cross-sectional dimensions were determined using small-angle X-ray scattering (SAXS), transmission electron microscopy and atomic force microscopy techniques, where the rheological properties under different concentration and ionic strength were also investigated. The formation of hydrogel was evidenced by increasing the CNF concentration or ionic strength of the solvent (water), while the gel structure in ion-induced CNF hydrogels was found to be relatively inhomogeneous. The gelation behavior was closely related to the segmental aggregation of charged CNF, which could be quantitatively characterized by the correlation length (Ο) from the low-angle scattering profile and the scattering invariant (Q) in SAXS.
  •  
5.
  • Geng, Lihong, et al. (författare)
  • Understanding the Mechanistic Behavior of Highly Charged Cellulose Nanofibers in Aqueous Systems
  • 2018
  • Ingår i: Macromolecules. - : American Chemical Society (ACS). - 0024-9297 .- 1520-5835. ; 51:4, s. 1498-1506
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanistic behavior and flow properties of cellulose nanofibers (CNFs) in aqueous systems can be described by the crowding factor and the concept of contact points, which are functions of the aspect ratio and concentration of CNF in the suspension. In this study, CNFs with a range of aspect ratio and surface charge density (380-1360 mu mol/g) were used to demonstrate this methodology. It was shown that the critical networking point of the CNF suspension, determined by rheological measurements, was consistent with the gel crowding factor, which was 16. Correlated to the crowding factor, both viscosity and modulus of the systems were found to decrease by increasing the charge density of CNF, which also affected the flocculation behavior. Interestingly, an anomalous rheological behavior was observed near the overlap concentration (0.05 wt %) of CNF, at which the crowding factor was below the gel crowding factor, and the storage modulus (G') decreased dramatically at a given frequency threshold. This behavior is discussed in relation to the breakup of the entangled flocs and network in the suspension. The analysis of the mechanistic behavior of CNF aqueous suspensions by the crowding factor provides useful insight for fabricating high-performance nanocellulose-based materials.
  •  
6.
  • Lu, Yingchang, et al. (författare)
  • A Transcriptome-Wide Association Study Among 97,898 Women to Identify Candidate Susceptibility Genes for Epithelial Ovarian Cancer Risk.
  • 2018
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 78:18, s. 5419-5430
  • Tidskriftsartikel (refereegranskat)abstract
    • .AbstractLarge-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in noncoding regions, and causal genes underlying these associations remain largely unknown. Here, we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P < 2.2 × 10−6, we identified 35 genes, including FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10−7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and three genes remained (P < 1.47 × 10−3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis.Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and reveals FZD4 as a novel locus associated with EOC risk. Cancer Res; 78(18); 5419–30. ©2018 AACR.
  •  
7.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7
Typ av publikation
tidskriftsartikel (7)
Typ av innehåll
refereegranskat (7)
Författare/redaktör
Nevanlinna, Heli (3)
Teixeira, Manuel R (3)
Neuhausen, Susan L (3)
Benitez, Javier (3)
Chenevix-Trench, Geo ... (3)
Daly, Mary B. (3)
visa fler...
Hamann, Ute (3)
Jakubowska, Anna (3)
Offit, Kenneth (3)
Couch, Fergus J. (3)
Simard, Jacques (3)
Easton, Douglas F. (3)
Barkardottir, Rosa B ... (3)
Thomassen, Mads (3)
Antoniou, Antonis C. (3)
McGuffog, Lesley (3)
Gronwald, Jacek (3)
Goldgar, David E. (3)
Domchek, Susan M. (3)
Chang-Claude, Jenny (2)
Romieu, Isabelle (2)
Giles, Graham G (2)
John, Esther M (2)
Rennert, Gad (2)
Toland, Amanda E. (2)
Andrulis, Irene L. (2)
Anton-Culver, Hoda (2)
Bonanni, Bernardo (2)
Buys, Saundra S. (2)
Devilee, Peter (2)
Eccles, Diana M. (2)
Fasching, Peter A. (2)
Hollestelle, Antoine ... (2)
Meindl, Alfons (2)
Radice, Paolo (2)
Schmutzler, Rita K. (2)
Zheng, Wei (2)
Pharoah, Paul D. P. (2)
Ehrencrona, Hans (2)
Sinilnikova, Olga M. (2)
Healey, Sue (2)
Frost, Debra (2)
Stoppa-Lyonnet, Domi ... (2)
Mazoyer, Sylvie (2)
Hogervorst, Frans B. ... (2)
Lubinski, Jan (2)
Huzarski, Tomasz (2)
Spurdle, Amanda B. (2)
Nathanson, Katherine ... (2)
Blank, Stephanie V. (2)
visa färre...
Lärosäte
Lunds universitet (4)
Karolinska Institutet (4)
Uppsala universitet (3)
Kungliga Tekniska Högskolan (2)
Göteborgs universitet (1)
Högskolan i Halmstad (1)
visa fler...
Stockholms universitet (1)
Linköpings universitet (1)
Chalmers tekniska högskola (1)
RISE (1)
visa färre...
Språk
Engelska (7)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (4)
Teknik (3)
Naturvetenskap (2)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy