SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sheykhzade Majid) srt2:(2013)"

Sökning: WFRF:(Sheykhzade Majid) > (2013)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Erdling, André, et al. (författare)
  • VIP/PACAP receptors in cerebral arteries of rat: Characterization, localization and relation to intracellular calcium.
  • 2013
  • Ingår i: Neuropeptides. - : Elsevier BV. - 1532-2785 .- 0143-4179. ; 47:2, s. 85-92
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase activating peptide (PACAP)-containing nerves surround cerebral blood vessels. The peptides have potent vasodilator properties via smooth muscle cell receptors and activation of adenylate cyclase. The purpose of this study was to describe the effects of two putative VIP/PACAP receptor antagonists and the distribution of the receptor protein in rat brain vessels. METHODS: The vascular effects of VIP, PACAP-27 and PACAP-38 were investigated in segments of rat middle cerebral artery (MCA) by pressurized arteriography, and in a wire myograph. The antagonistic responses to PACAP6-38 and PG99-465 were evaluated. In addition, the receptor subtypes for VIP and PACAP (VPAC(1), VPAC(2) and PAC(1)) were visualized in the rat middle cerebral artery by immunohistochemistry and Western blotting. RESULTS: In the perfusion model, abluminal but not luminal VIP, PACAP-27 and PACAP-38 caused concentration-dependent relaxations of the MCA (27.1±0.2%, 25.2±0.4% and 0.3±0.1%, respectively). In the wire myograph, there was no significant difference in potency of the peptides in the MCA. In both systems, PACAP6-38 and PG99-465 inhibited the VIP induced relaxation. Western blot showed the presence of the receptor proteins in cerebral vasculature and immunohistochemistry showed that all three receptors are present and located in the cytoplasm of smooth muscle cells. CONCLUSION: In both systems, the two blockers antagonized the relaxant VIP effect; the potency order of agonists and the immunohistochemistry suggest the presence of the dilatory VPAC(1) and VPAC(2) receptors on the smooth muscle cells.
  •  
2.
  • Rasmussen, Marianne N. P., et al. (författare)
  • Permanent Distal Occlusion of Middle Cerebral Artery in Rat Causes Local Increased ETB, 5-HT1B and AT(1) Receptor-Mediated Contractility Downstream of Occlusion
  • 2013
  • Ingår i: Journal of Vascular Research. - : S. Karger AG. - 1423-0135 .- 1018-1172. ; 50:5, s. 396-409
  • Tidskriftsartikel (refereegranskat)abstract
    • Background/Aims: In response to experimental stroke, a characteristic functional and expressional upregulation of contractile G-protein-coupled receptors has been uncovered in the affected cerebral vasculature; however, the mechanism initiating this phenomenon remains unknown. Methods: Using a model of permanent distal occlusion of rat middle cerebral arteries, we investigated whether there was a regional difference in receptor-mediated contractility of segments located upstream and downstream of the occlusion site. The contractile response to endothelin, angiotensin and 5-hydroxytryptamine receptor stimulation was studied by sensitive wire myograph. Results: Only downstream segments exhibited an augmented contractile response to stimulation with each of the three ligands, with the response towards sarafotoxin 6c being especially augmented compared to sham, upstream and contralateral controls. This functional increase did not seem to relate to ischemic tissue damage, inflammatory cell infiltration or the element of reperfusion. Interestingly, immunohistochemistry did not show any difference in the level of immunoreactivity towards endothelin B (ETB) receptors between groups. Conclusion: Single artery occlusion without significant visible infarct resulted in locally increased ETB, angiotensin type 1 and 5-hydroxytryptamine 1B receptor-mediated contractile responses only in segments located downstream of the occlusion site. This suggests lack of wall stress as an initiating trigger leading to regulation of contractile response after cerebral stroke. (C) 2013 S. Karger AG, Basel
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy