SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Shirani Hamid) srt2:(2015-2019)"

Sökning: WFRF:(Shirani Hamid) > (2015-2019)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Calvo-Rodriguez, Maria, et al. (författare)
  • In vivo detection of tau fibrils and amyloid beta aggregates with luminescent conjugated oligothiophenes and multiphoton microscopy
  • 2019
  • Ingår i: Acta neuropathologica communications. - : BMC. - 2051-5960. ; 7:1
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection of amyloid beta deposits and neurofibrillary tangles, both hallmarks of Alzheimers disease (AD), is key to understanding the mechanisms underlying these pathologies. Luminescent conjugated oligothiophenes (LCOs) enable fluorescence imaging of these protein aggregates. Using LCOs and multiphoton microscopy, individual tangles and amyloid beta deposits were labeled in vivo and imaged longitudinally in a mouse model of tauopathy and cerebral amyloidosis, respectively. Importantly, LCO HS-84, whose emission falls in the green region of the spectrum, allowed for the first time longitudinal imaging of tangle dynamics following a single intravenous injection. In addition, LCO HS-169, whose emission falls in the red region of the spectrum, successfully labeled amyloid beta deposits, allowing multiplexing with other reporters whose emission falls in the green region of the spectrum. In conclusion, this method can provide a new approach for longitudinal in vivo imaging using multiphoton microscopy of AD pathologies as well as other neurodegenerative diseases associated with protein aggregation in mouse models.
  •  
2.
  • Choong, Ferdinand X., et al. (författare)
  • Stereochemical Identification of Glucans by a Donor-Acceptor-Donor Conjugated Pentamer Enables Multi-Carbohydrate Anatomical Mapping in Plant Tissues
  • 2019
  • Ingår i: Cellulose. - : Springer Netherlands. - 0969-0239 .- 1572-882X. ; 26:7, s. 4253-4264
  • Tidskriftsartikel (refereegranskat)abstract
    • Optotracing is a novel method for analytical imaging of carbohydrates in plant and microbial tissues. This optical method applies structure-responsive oligothiophenes as molecular fluorophores emitting unique optical signatures when bound to polysaccharides. Herein, we apply Carbotrace680, a short length anionic oligothiophene with a central heterocyclic benzodithiazole (BTD) motif, to probe for different glucans. The donor-acceptor-donor type electronic structure of Carbotrace680 provides improved spectral properties compared to oligothiophenes due to the possibility of intramolecular charge-transfer transition to the BTD motif. This enables differentiation of glucans based on the glycosidic linkage stereochemistry. Thus -configured starch is readily differentiated from -configured cellulose. The versatility of optotracing is demonstrated by dynamic monitoring of thermo-induced starch remodelling, shown in parallel by spectrophotometry and microscopy of starch granules. Imaging of Carbotrace680 bound to multiple glucans in plant tissues provided direct identification of their physical locations, revealing the spatial relationship between structural (cellulose) and storage (starch) glucans at sub-cellular scale. Our work forms the basis for the development of superior optotracers for sensitive detection of polysaccharides. Our non-destructive method for anatomical mapping of glucans in biomass will serve as an enabling technology for developments towards efficient use of plant-derived materials and biomass.
  •  
3.
  • Herrmann, Uli S., et al. (författare)
  • Structure-based drug design identifies polythiophenes as antiprion compounds
  • 2015
  • Ingår i: Science Translational Medicine. - : AMER ASSOC ADVANCEMENT SCIENCE. - 1946-6234 .- 1946-6242. ; 7:299, s. 299ra123-
  • Tidskriftsartikel (refereegranskat)abstract
    • Prions cause transmissible spongiform encephalopathies for which no treatment exists. Prions consist of PrPSc, a misfolded and aggregated form of the cellular prion protein (PrPC). We explore the antiprion properties of luminescent conjugated polythiophenes (LCPs) that bind and stabilize ordered protein aggregates. By administering a library of structurally diverse LCPs to the brains of prion-infected mice via osmotic minipumps, we found that antiprion activity required a minimum of five thiophene rings bearing regularly spaced carboxyl side groups. Solid-state nuclear magnetic resonance analyses and molecular dynamics simulations revealed that anionic side chains interacted with complementary, regularly spaced cationic amyloid residues of model prions. These findings allowed us to extract structural rules governing the interaction between LCPs and protein aggregates, which we then used to design a new set of LCPs with optimized binding. The new set of LCPs showed robust prophylactic and therapeutic potency in prion-infected mice, with the lead compound extending survival by greater than80% and showing activity against both mouse and hamster prions as well as efficacy upon intraperitoneal administration into mice. These results demonstrate the feasibility of targeted chemical design of compounds that may be useful for treating diseases of aberrant protein aggregation such as prion disease.
  •  
4.
  • Klingstedt, Therése, et al. (författare)
  • Distinct Spacing Between Anionic Groups: An Essential Chemical Determinant for Achieving Thiophene-Based Ligands to Distinguish Beta-Amyloid or Tau Polymorphic Aggregates
  • 2015
  • Ingår i: Chemistry - A European Journal. - : Wiley-VCH Verlag. - 0947-6539 .- 1521-3765. ; 21:25, s. 9072-9082
  • Tidskriftsartikel (refereegranskat)abstract
    • The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the existence of distinct aggregated morphotypes has been suggested to explain the heterogeneous phenotype reported for these diseases. Thus, the development of molecular probes able to distinguish such morphotypes is essential. We report an anionic tetrameric oligothiophene compound that can be utilized for spectral assignment of different morphotypes of -amyloid or tau aggregates present in transgenic mice at distinct ages. The ability of the ligand to spectrally distinguish between the aggregated morphotypes was reduced when the spacing between the anionic substituents along the conjugated thiophene backbone was altered, which verified that specific molecular interactions between the ligand and the protein aggregate are necessary to detect aggregate polymorphism. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between different morphotypes of protein aggregates.
  •  
5.
  • Selegård, Robert, et al. (författare)
  • Distinct Electrostatic Interactions Govern the Chiro-Optical Properties and Architectural Arrangement of Peptide-Oligothiophene Hybrid Materials
  • 2017
  • Ingår i: Macromolecules. - : AMER CHEMICAL SOC. - 0024-9297 .- 1520-5835. ; 50:18, s. 7102-7110
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of chiral optoelectronic materials is of great interest due to their potential of being utilized in electronic devices, biosensors, and artificial enzymes. Herein, we report the chiral optical properties and architectural arrangement of optoelectronic materials generated from noncovalent self-assembly of a cationic synthetic peptide and five chemically defined anionic pentameric oligothiophenes. The peptide-oligothiophene hybrid materials exhibit a three-dimensional ordered helical structure and optical activity in the pi-pi* transition region that are observed due to a single chain induced chirality of the conjugated thiophene backbone upon interaction with the peptide. The latter property is highly dependent on electrostatic interactions between the peptide and the oligothiophene, verifying that a distinct spacing of the carboxyl groups along the thiophene backbone is a major chemical determinant for having a hybrid material with distinct optoelectronic properties. The necessity of the electrostatic interaction between specific carboxyl functionalities along the thiophene backbone and the lysine residues of the peptide, as well as the induced circular dichroism of the thiophene backbone, was also confirmed by theoretical calculations. We foresee that our findings will aid in designing optoelectronic materials with dynamic architectonical precisions as well as offer the possibility to create the next generation of materials for organic electronics and organic bioelectronics.
  •  
6.
  • Shirani, Hamid, et al. (författare)
  • A Palette of Fluorescent Thiophene-Based Ligands for the Identification of Protein Aggregates
  • 2015
  • Ingår i: Chemistry - A European Journal. - : Wiley-VCH Verlagsgesellschaft. - 0947-6539 .- 1521-3765. ; 21:43, s. 15133-15137
  • Tidskriftsartikel (refereegranskat)abstract
    • By replacing the central thiophene unit of an anionic pentameric oligothiophene with other heterocyclic moities, a palette of pentameric thiophene-based ligands with distinct fluorescent properties were synthesized. All ligands displayed superior selectivity towards recombinant amyloid fibrils as well as disease-associated protein aggregates in tissue sections.
  •  
7.
  • Shirani, Hamid, et al. (författare)
  • Synthesis of Thiophene-Based Optical Ligands That Selectively Detect Tau Pathology in Alzheimers Disease
  • 2017
  • Ingår i: Chemistry - A European Journal. - : WILEY-V C H VERLAG GMBH. - 0947-6539 .- 1521-3765. ; 23:67, s. 17127-17135
  • Tidskriftsartikel (refereegranskat)abstract
    • The accumulation of protein aggregates is associated with many devastating neurodegenerative diseases and the development of molecular ligands able to detect these pathological hallmarks is essential. Here, the synthesis of thiophene based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs) that can be utilized for selective assignment of tau aggregates in brain tissue with Alzheimers disease (AD) pathology is reported. The ability of the ligands to selectively distinguish tau deposits from the other AD associated pathological hallmark, senile plaques consisting of aggregated amyloid- (A) peptide, was reduced when the chemical composition of the ligands was altered, verifying that specific molecular interactions between the ligands and the aggregates are necessary for the selective detection of tau deposits. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species consisting of different proteins. In addition, the bTVBT scaffold might be utilized to create powerful practical research tools for studying the underlying molecular events of tau aggregation and for creating novel agents for clinical imaging of tau pathology in AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy