SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sierra Raymond G.) srt2:(2015-2019)"

Sökning: WFRF:(Sierra Raymond G.) > (2015-2019)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Fuller, Franklin D, et al. (författare)
  • Drop-on-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers
  • 2017
  • Ingår i: Nature Methods. - : Macmillan Publishers Ltd.. - 1548-7091 .- 1548-7105. ; 14, s. 443-449
  • Tidskriftsartikel (refereegranskat)abstract
    • X-ray crystallography at X-ray free-electron laser sources is a powerful method for studying macromolecules at biologically relevant temperatures. Moreover, when combined with complementary techniques like X-ray emission spectroscopy, both global structures and chemical properties of metalloenzymes can be obtained concurrently, providing insights into the interplay between the protein structure and dynamics and the chemistry at an active site. The implementation of such a multimodal approach can be compromised by conflicting requirements to optimize each individual method. In particular, the method used for sample delivery greatly affects the data quality. We present here a robust way of delivering controlled sample amounts on demand using acoustic droplet ejection coupled with a conveyor belt drive that is optimized for crystallography and spectroscopy measurements of photochemical and chemical reactions over a wide range of time scales. Studies with photosystem II, the phytochrome photoreceptor, and ribonucleotide reductase R2 illustrate the power and versatility of this method.
  •  
4.
  • Laksmono, Hartawan, et al. (författare)
  • Anomalous Behavior of the Homogeneous Ice Nucleation Rate in No-Man's Land
  • 2015
  • Ingår i: The Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 6:14, s. 2826-2832
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an analysis of ice nucleation kinetics from near-ambient pressure water as temperature decreases below the homogeneous limit T-H by cooling micrometer-sized droplets (microdroplets) evaporatively at 10(3)-10(4) K/s and probing the structure ultrafast using femtosecond pulses from the Linac Coherent Light Source (LCLS) free-electron X-ray laser. Below 232 K, we observed a slower nucleation rate increase with decreasing temperature than anticipated from previous measurements, which we suggest is due to the rapid decrease in water's diffusivity. This is consistent with earlier findings that microdroplets do not crystallize at <227 K, but vitrify at cooling rates of 10(6)-10(7) K/s. We also hypothesize that the slower increase in the nucleation rate is connected with the proposed fragile-to-strong transition anomaly in water.
  •  
5.
  • Munke, Anna, et al. (författare)
  • Data Descriptor : Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source
  • 2016
  • Ingår i: Scientific Data. - : Nature Publishing Group. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a wellcharacterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 mu m diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 angstrom ngstrom were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.
  •  
6.
  • Sellberg, Jonas A., et al. (författare)
  • X-ray emission spectroscopy of bulk liquid water in no-man's land
  • 2015
  • Ingår i: Journal of Chemical Physics. - : AIP Publishing. - 0021-9606 .- 1089-7690. ; 142:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (T-H) of similar to 232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below T-H using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b(1)' and 1b(1) peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.
  •  
7.
  • Young, Iris D., et al. (författare)
  • Structure of photosystem II and substrate binding at room temperature
  • 2016
  • Ingår i: Nature. - : Macmillan Publishers Ltd.. - 0028-0836 .- 1476-4687. ; 540:7633, s. 453-457
  • Tidskriftsartikel (refereegranskat)abstract
    • Light-induced oxidation of water by photosystem II (PS II) in plants, algae and cyanobacteria has generated most of the dioxygen in the atmosphere. PS II, a membrane-bound multi-subunit pigment protein complex, couples the one-electron photochemistry at the reaction centre with the four-electron redox chemistry of water oxidation at the Mn4CaO5 cluster in the oxygen-evolving complex (OEC). Under illumination, the OEC cycles through five intermediate S-states (S0 to S4)1, in which S1 is the dark-stable state and S3 is the last semi-stable state before O–O bond formation and O2 evolution2,3. A detailed understanding of the O–O bond formation mechanism remains a challenge, and will require elucidation of both the structures of the OEC in the different S-states and the binding of the two substrate waters to the catalytic site4–6. Here we report the use of femtosecond pulses from an X-ray free electron laser (XFEL) to obtain damage-free, room temperature structures of dark-adapted (S1), two-flash illuminated (2F; S3-enriched), and ammonia-bound two-flash illuminated (2F-NH3; S3-enriched) PS II. Although the recent 1.95 Å resolution structure of PS II at cryogenic temperature using an XFEL7 provided a damage-free view of the S1 state, measurements at room temperature are required to study the structural landscape of proteins under functional conditions8,9, and also for in situ advancement of the S-states. To investigate the water-binding site(s), ammonia, a water analogue, has been used as a marker, as it binds to the Mn4CaO5 cluster in the S2 and S3 states10. Since the ammonia-bound OEC is active, the ammonia-binding Mn site is not a substrate water site10–13. This approach, together with a comparison of the native dark and 2F states, is used to discriminate between proposed O–O bond formation mechanisms.
  •  
8.
  • Dao, E. Han, et al. (författare)
  • Structure of the 30S ribosomal decoding complex at ambient temperature
  • 2018
  • Ingår i: RNA. - : Cold Spring Harbor Laboratory Press (CSHL). - 1355-8382 .- 1469-9001. ; 24:12, s. 1667-1676
  • Tidskriftsartikel (refereegranskat)abstract
    • The ribosome translates nucleotide sequences of messenger RNA to proteins through selection of cognate transfer RNA according to the genetic code. To date, structural studies of ribosomal decoding complexes yielding high-resolution data have predominantly relied on experiments performed at cryogenic temperatures. New light sources like the X-ray free electron laser (XFEL) have enabled data collection from macromolecular crystals at ambient temperature. Here, we report an X-ray crystal structure of the Therm us thermophilus 30S ribosomal subunit decoding complex to 3.45 angstrom resolution using data obtained at ambient temperature at the Linac Coherent Light Source (LCLS). We find that this ambient-temperature structure is largely consistent with existing cryogenic-temperature crystal structures, with key residues of the decoding complex exhibiting similar conformations, including adenosine residues 1492 and 1493. Minor variations were observed, namely an alternate conformation of cytosine 1397 near the mRNA channel and the A-site. Our serial crystallography experiment illustrates the amenability of ribosomal microcrystals to routine structural studies at ambient temperature, thus overcoming a long-standing experimental limitation to structural studies of RNA and RNA-protein complexes at near-physiological temperatures.
  •  
9.
  • Ekeberg, Tomas, et al. (författare)
  • Single-shot diffraction data from the Mimivirus particle using an X-ray free-electron laser
  • 2016
  • Ingår i: Scientific Data. - : Springer Science and Business Media LLC. - 2052-4463. ; 3
  • Tidskriftsartikel (refereegranskat)abstract
    • Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.
  •  
10.
  • Kern, Jan, et al. (författare)
  • Structures of the intermediates of Kok’s photosynthetic water oxidation clock
  • 2018
  • Ingår i: Nature. - : Nature Publishing Group. - 0028-0836 .- 1476-4687. ; 563, s. 421-425
  • Tidskriftsartikel (refereegranskat)abstract
    • Inspired by the period-four oscillation in flash-induced oxygen evolution of photosystem II discovered by Joliot in 1969, Kok performed additional experiments and proposed a five-state kinetic model for photosynthetic oxygen evolution, known as Kok’s S-state clock or cycle1,2. The model comprises four (meta)stable intermediates (S0, S1, S2 and S3) and one transient S4 state, which precedes dioxygen formation occurring in a concerted reaction from two water-derived oxygens bound at an oxo-bridged tetra manganese calcium (Mn4CaO5) cluster in the oxygen-evolving complex3–7. This reaction is coupled to the two-step reduction and protonation of the mobile plastoquinone QB at the acceptor side of PSII. Here, using serial femtosecond X-ray crystallography and simultaneous X-ray emission spectroscopy with multi-flash visible laser excitation at room temperature, we visualize all (meta)stable states of Kok’s cycle as high-resolution structures (2.04–2.08 Å). In addition, we report structures of two transient states at 150 and 400 µs, revealing notable structural changes including the binding of one additional ‘water’, Ox, during the S2→S3 state transition. Our results suggest that one water ligand to calcium (W3) is directly involved in substrate delivery. The binding of the additional oxygen Ox in the S3 state between Ca and Mn1 supports O–O bond formation mechanisms involving O5 as one substrate, where Ox is either the other substrate oxygen or is perfectly positioned to refill the O5 position during O2 release. Thus, our results exclude peroxo-bond formation in the S3 state, and the nucleophilic attack of W3 onto W2 is unlikely.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy