SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sigmundsson Freysteinn) srt2:(2020-2024)"

Sökning: WFRF:(Sigmundsson Freysteinn) > (2020-2024)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Greiner, Sonja H. M., et al. (författare)
  • Interaction between propagating basaltic dikes and pre-existing fractures : A case study in hyaloclastite from Dyrfjoll, Iceland
  • 2023
  • Ingår i: Journal of Volcanology and Geothermal Research. - : Elsevier. - 0377-0273 .- 1872-6097. ; 442
  • Tidskriftsartikel (refereegranskat)abstract
    • Magma in the Earth's crust is commonly transported through dikes. Fractures and faults, which are common in the shallow crust, form structural weaknesses that can act as energy-efficient propagation pathways. Although examples of this are known from active and extinct volcanoes in varying host rocks, the conditions and mechanisms of how and when dikes are influenced by these structures are not yet fully understood. This study investigates how basaltic dikes propagating through hyaloclastite in the shallow crust interact with pre-existing fractures. Using virtual 3D-models from drone-based photogrammetry, we mapped basaltic dikes exposed in a caldera-filling hyaloclastite in the extinct Dyrfjoll volcano, NE-Iceland, to measure the orientations of fractures and dikes, and quantify their interactions. We observe 39 changes in strike among 45 dikes and found a strong control of the governing stress field on orientations and interactions. Three types of dike-fracture interaction were identified: (1) Dikes propagating along pre-existing fractures. This is most frequently observed for dikes following the tectonic stress field. (2) Dikes with an abrupt change in strike occurring near or at a crosscutting fracture, but without magma flow into the fracture. (3) Dikes arrested at a crosscutting fracture. Such dikes may develop offshoots near the dike tip, which may approach the fracture at different angles and be able to cut across. Understanding how dikes interact with pre-existing fractures in moderately fractured host rock such as hyalo-clastite is relevant for hazard assessment and monitoring of volcanically active areas.
  •  
2.
  • Parks, Michelle M., et al. (författare)
  • 2021-2023 Unrest and Geodetic Observations at Askja Volcano, Iceland
  • 2024
  • Ingår i: GEOPHYSICAL RESEARCH LETTERS. - 0094-8276 .- 1944-8007. ; 51:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Unrest began in July 2021 at Askja volcano in the Northern Volcanic Zone (NVZ) of Iceland. Its most recent eruption, in 1961, was predominantly effusive and produced similar to 0.1 km3 lava field. The last plinian eruption at Askja occurred in 1875. Geodetic measurements between 1983 and 2021 detail subsidence of Askja, decaying in an exponential manner. At the end of July 2021, inflation was detected at Askja volcano, from GNSS observations and Sentinel-1 interferograms. The inflationary episode can be divided into two periods from the onset of inflation until September 2023. An initial period until 20 September 2021 when geodetic models suggest transfer of magma (or magmatic fluids) from within the shallowest part of the magmatic system (comprising an inflating and deflating source), potentially involving silicic magma. A following period when one source of pressure increase at shallow depth can explain the observations. Askja volcano, situated in the Northern Volcanic Zone in Iceland, has been quiet since its last eruption in 1961, with surface deformation measurements from 1983 to 2021 displaying a decaying subsidence signal within the Askja caldera. However, at the end of July 2021, the volcano began to inflate. This was detected on both GNSS and satellite observations. As of September 2023, similar to 65 cm of uplift had been measured at GNSS station OLAC. Modeling of surface deformation measurements indicates that the inflation was triggered by upward migration of melt (or magmatic fluids). At the end of July 2021, Askja volcano began to inflate-detected on both GNSS and satellite observations, ending 1983-2021 subsidence Geodetic modeling indicates upward migration of magma, feeding a magma body at an inferred depth of 2.5-3.1 km under the main Askja caldera Start of unrest was associated with magma transfer within the upper part of the system, followed by possible additional influx from depth
  •  
3.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy