SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Signori A.) srt2:(2023)"

Sökning: WFRF:(Signori A.) > (2023)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Signori, A, et al. (författare)
  • Heterogeneity on long-term disability trajectories in patients with secondary progressive MS: a latent class analysis from Big MS Data network
  • 2023
  • Ingår i: Journal of neurology, neurosurgery, and psychiatry. - : BMJ. - 1468-330X .- 0022-3050. ; 94:1, s. 23-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Over the decades, several natural history studies on patients with primary (PPMS) or secondary progressive multiple sclerosis (SPMS) were reported from international registries. In PPMS, a consistent heterogeneity on long-term disability trajectories was demonstrated. The aim of this study was to identify subgroups of patients with SPMS with similar longitudinal trajectories of disability over time.MethodsAll patients with MS collected within Big MS registries who received an SPMS diagnosis from physicians (cohort 1) or satisfied the Lorscheider criteria (cohort 2) were considered. Longitudinal Expanded Disability Status Scale (EDSS) scores were modelled by a latent class growth analysis (LCGA), using a non-linear function of time from the first EDSS visit in the range 3–4.ResultsA total of 3613 patients with SPMS were included in the cohort 1. LCGA detected three different subgroups of patients with a mild (n=1297; 35.9%), a moderate (n=1936; 53.6%) and a severe (n=380; 10.5%) disability trajectory. Median time to EDSS 6 was 12.1, 5.0 and 1.7 years, for the three groups, respectively; the probability to reach EDSS 6 at 8 years was 14.4%, 78.4% and 98.3%, respectively. Similar results were found among 7613 patients satisfying the Lorscheider criteria.ConclusionsContrary to previous interpretations, patients with SPMS progress at greatly different rates. Our identification of distinct trajectories can guide better patient selection in future phase 3 SPMS clinical trials. Additionally, distinct trajectories could reflect heterogeneous pathological mechanisms of progression.
  •  
3.
  • Tavares, Julia, et al. (författare)
  • Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
  • 2023
  • Ingår i: Nature. - : Springer Nature. - 0028-0836 .- 1476-4687. ; 617:7959, s. 111-117
  • Tidskriftsartikel (refereegranskat)abstract
    • Tropical forests face increasing climate risk(1,2), yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, ?(50)) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk(3-5), little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters ?(50) and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both ?(50) and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM(50 )forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon(6,7), with strong implications for the Amazon carbon sink.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy