SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Sigvardsson Mikael) srt2:(2015-2019)"

Sökning: WFRF:(Sigvardsson Mikael) > (2015-2019)

  • Resultat 1-10 av 30
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Guzzi, Nicola, et al. (författare)
  • Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells
  • 2018
  • Ingår i: Cell. - : Elsevier BV. - 0092-8674 .- 1097-4172. ; 173:5, s. 26-1216
  • Tidskriftsartikel (refereegranskat)abstract
    • Pseudouridylation (Ψ) is the most abundant and widespread type of RNA epigenetic modification in living organisms; however, the biological role of Ψ remains poorly understood. Here, we show that a Ψ-driven posttranscriptional program steers translation control to impact stem cell commitment during early embryogenesis. Mechanistically, the Ψ “writer” PUS7 modifies and activates a novel network of tRNA-derived small fragments (tRFs) targeting the translation initiation complex. PUS7 inactivation in embryonic stem cells impairs tRF-mediated translation regulation, leading to increased protein biosynthesis and defective germ layer specification. Remarkably, dysregulation of this posttranscriptional regulatory circuitry impairs hematopoietic stem cell commitment and is common to aggressive subtypes of human myelodysplastic syndromes. Our findings unveil a critical function of Ψ in directing translation control in stem cells with important implications for development and disease. Translational control in stem cells is orchestrated by pseudouridylation of specific tRNA-derived fragments, impacting stem cell commitment during key developmental processes.
  •  
2.
  • Jensen, Christina T, et al. (författare)
  • Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis
  • 2018
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 215:7, s. 1947-1963
  • Tidskriftsartikel (refereegranskat)abstract
    • To understand the developmental trajectories in early lymphocyte differentiation, we identified differentially expressed surface markers on lineage-negative lymphoid progenitors (LPs). Single-cell polymerase chain reaction experiments allowed us to link surface marker expression to that of lineage-associated transcription factors (TFs) and identify GFRA2 and BST1 as markers of early B cells. Functional analyses in vitro and in vivo as well as single-cell gene expression analyses supported that surface expression of these proteins defined distinct subpopulations that include cells from both the classical common LPs (CLPs) and Fraction A compartments. The formation of the GFRA2-expressing stages of development depended on the TF EBF1, critical both for the activation of stage-specific target genes and modulation of the epigenetic landscape. Our data show that consecutive expression of Ly6D, GFRA2, and BST1 defines a developmental trajectory linking the CLP to the CD19+ progenitor compartment.
  •  
3.
  • Bratengeier, Cornelia, 1983- (författare)
  • Mechanisms of mechanically induced Osteoclastogenesis : in a novel in vitro model for bone implant loosening
  • 2019
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Total joint arthroplasty is the primary intervention in the treatment of end-stage osteoarthritis. Despite the high success rate, in some patients, the replacement will fail during their lifetime requiring a revision of the implant. These revisions are strenuous for the patient and costly for health care. Joint replacement at a younger age, in combination with a more active lifestyle, increases the need for an early revision of the joint prosthesis. The main reason for revision surgeries is aseptic loosening, a condition where the prosthesis is loosening due to bone degradation at the peri-prosthetic interface in the absence of infections. The most well-established pathological mechanism for aseptic loosening is related to wear particles, generated from different parts of the prosthesis that will trigger bone degradation and bone loss. In addition, early micromotions of the prosthesis and resulting local pressurized fluid flow in the peri-prosthetic interface (supraphysiological loading) have also been identified as a cause for aseptic loosening. However, it remains unknown what cells are the primary responders to supraphysiological loading, and what underlying physical, cellular and molecular mechanism that triggers osteoclast differentiation and osteolysis.In this thesis, we intended to shed light on three currently unknown aspects of mechanical loading-induced peri-prosthetic osteolysis, leading to aseptic loosening of orthopedic prostheses: (1)Which cells are the primary responder to supraphysiological loading? (2)What characteristics of the mechanical stimulus induce an osteo-protective or osteo-destructive response? (3)Which cellular mechano-sensing mechanisms are involved in an osteo-destructive response?We successfully implemented supraphysiological mechanical loading, mimicking the periprosthetic pressurized fluid flow around a loosening implant, in an in vitro model for bone implant loosening. Using this model, we uncovered the involvement of mesenchymal stem cells and myeloid progenitor cells (monocytes) in mechanical loading-induced peri-prosthetic osteolysis. Applying supraphysiological loading on cells from patients undergoing primary hip arthroplasty, successfully validated the in vitro model for the use of cells of human origin. We further identified in murine myeloid progenitor cells that a combination of high loading amplitude (3.0±0.2Pa), prolonged active loading duration per cycle (duty cycle 22%-50%), and rapid alterations in minimum/maximum values of the loading profile (square wave) is necessary to induce an osteo-destructive response. Further, the loading-induced ATP release and subsequent activation of the P2X7 receptor was essential for the release of soluble factors modulating osteoclastogenesis.In conclusion, we expect that the proposed new in vitro model is a helpful tool to further advance the knowledge in aseptic loosening, by uncovering the mechanoresponsive cellular mechanism to supraphysiological mechanical loading. The identification of the respondent cells in mechanical loading-induced prosthetic loosening gives the opportunity to deliver targeted treatment strategies. Furthermore, identifying the physical parameters that define the shift towards an osteo-destructive response emphasizes the importance of the prosthetic design and surgical technique to reduce mechanical loading-induced bone degradation around a prosthesis.
  •  
4.
  • Davies, Lindsay C., et al. (författare)
  • Type 1 Diabetes Mellitus Donor Mesenchymal. Stromal Cells Exhibit Comparable Potency to Healthy Controls In Vitro
  • 2016
  • Ingår i: Stem Cells Translational Medicine. - : Oxford University Press (OUP). - 2157-6564 .- 2157-6580. ; 5:11, s. 1485-1495
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone marrow mesenchymal stromal cells (BM-MSCs) have been characterized and used in many clinical studies based on their immunomodulatory and regenerative properties. We have recently reported the benefit of autologous MSC systemic therapy in the treatment of type 1 diabetes mellitus (T1D). Compared with allogeneic cells, use of autologous products reduces the risk of eliciting undesired complications in the recipient, including rejection, immunization, and transmission of viruses and prions; however, comparable potency of autologous cells is required for this treatment approach to remain feasible. To date, no analysis has been reported that phenotypically and functionally characterizes MSCs derived from newly diagnosed and late-stage T1D donors in vitro with respect to their suitability for systemic immunotherapy. In this study, we used gene array in combination with functional in vitro assays to address these questions. MSCs from T1D donors and healthy controls were expanded from BM aspirates. BM mononuclear cell counts and growth kinetics were comparable between the groups, with equivalent colony-forming unit-fibroblast capacity. Gene microarrays demonstrated differential gene expression between healthy and late-stage T1D donors in relation to cytokine secretion, immunomodulatory activity, and wound healing potential. Despite transcriptional differences, T1D MSCs did not demonstrate a significant difference from healthy controls in immunosuppressive activity, migratory capacity, or hemocompatibility. We conclude that despite differential gene expression, expanded MSCs from T1D donors are phenotypically and functionally similar to healthy control MSCs with regard to their immunomodulatory and migratory potential, indicating their suitability for use in autologous systemic therapy.
  •  
5.
  • de Pooter, Renée F., et al. (författare)
  • Cutting Edge : Lymphomyeloid-Primed Progenitor Cell Fates Are Controlled by the Transcription Factor Tal1
  • 2019
  • Ingår i: Journal of immunology. - : The American Association of Immunologists. - 1550-6606 .- 0022-1767. ; 202:10, s. 2837-2842
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphoid specification is the process by which hematopoietic stem cells (HSCs) and their progeny become restricted to differentiation through the lymphoid lineages. The basic helix-loop-helix transcription factors E2A and Lyl1 form a complex that promotes lymphoid specification. In this study, we demonstrate that Tal1, a Lyl1-related basic helix-loop-helix transcription factor that promotes T acute lymphoblastic leukemia and is required for HSC specification, erythropoiesis, and megakaryopoiesis, is a negative regulator of murine lymphoid specification. We demonstrate that Tal1 limits the expression of multiple E2A target genes in HSCs and controls the balance of myeloid versus T lymphocyte differentiation potential in lymphomyeloid-primed progenitors. Our data provide insight into the mechanisms controlling lymphocyte specification and may reveal a basis for the unique functions of Tal1 and Lyl1 in T acute lymphoblastic leukemia.
  •  
6.
  • Fleenor, Courtney J., et al. (författare)
  • Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment
  • 2018
  • Ingår i: Molecular and Cellular Biology. - : AMER SOC MICROBIOLOGY. - 0270-7306 .- 1098-5549. ; 38:17
  • Tidskriftsartikel (refereegranskat)abstract
    • Zinc finger protein 521 (ZFP521), a DNA-binding protein containing 30 Kruppel-like zinc fingers, has been implicated in the differentiation of multiple cell types, including hematopoietic stem and progenitor cells (HSPC) and B lymphocytes. Here, we report a novel role for ZFP521 in regulating the earliest stages of hematopoiesis and lymphoid cell development via a cell-extrinsic mechanism. Mice with inactivated Zfp521 genes (Zfp521(-/-)) possess reduced frequencies and numbers of hematopoietic stem and progenitor cells, common lymphoid progenitors, and B and T cell precursors. Notably, ZFP521 deficiency changes bone marrow microenvironment cytokine levels and gene expression within resident HSPC, consistent with a skewing of hematopoiesis away from lymphopoiesis. These results advance our understanding of ZFP521s role in normal hematopoiesis, justifying further research to assess its potential as a target for cancer therapies.
  •  
7.
  • Halvarsson, Camilla, 1985- (författare)
  • Hypoxia inducible factor 1 alpha : dependent and independent regulation of hematopoietic stem cells and leukemia
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis has studied the role of low oxygen levels, or hypoxia, in hematopoietic stem cells (HSCs) and how, at the molecular level, it regulates stem cell maintenance and protects against oxidative stress induced by reactive oxygen species (ROS). HSCs reside within the bone marrow in specific niches created by a unique vascularized environment, which is suggested to be hypoxic and crucial for HSCs by maintaining a quiescent state of cell cycle and by redirecting metabolism away from the mitochondria to glycolysis. The niches are also believed to limit the production of ROS, which could damage DNA and disrupt the stem cell features. The hypoxia-responsive protein hypoxia-inducible factor 1 alpha (HIF-1α) is a major regulator of the hypoxic cell response in HSCs as well as in leukemic stem cells. Both these cells are thought to reside in the bone marrow where they are protected from stress and chemotherapy by niche cells and hypoxia.The thesis demonstrates that pyruvate dehydrogenase kinase 1 regulates a metabolic shift to glycolysis, and maintains the engraftment potential of both HSCs and multipotent progenitors upon transplantation. Furthermore, we wanted to determine whether HIF-1α or other signaling pathways are involved in protecting HSCs from ROS-induced cell death. Overexpression, silencing or a knockout mouse model of Hif-1α could not identify HIF-1α as important for protecting HSCs from oxidative stress-induced cell death through inhibition of synthesis of the antioxidant glutathione. Gene expression analysis instead identified the transcription factor nuclear factor kappa B (NF-κB) as induced by hypoxia. By studying NF- κB signaling we found increased NF-κB activity in cells cultured in hypoxia compared to normoxia. Suppression of inhibitor of kappa B indicated a putative role of NF-κB signaling in hypoxia-induced protection against oxidative stress. The findings show that hypoxia-induced protection to elevated levels of ROS upon glutathione depletion seems to be attributed to activation of the NF-κB signaling pathway independently of HIF-1α.To address the question whether hypoxic in vitro cultures support maintenance and promote HSC expansion we performed a limited dilution-transplantation assay. Our data indicate that hypoxic cultures maintain more long-term-reconstituting HSCs than normoxia, but this could not be confirmed statistically. Finally, we wanted to study the mechanisms by which hypoxia protect against chemotherapy. We could demonstrate that hypoxic culture protects leukemic cell lines against apoptosis induced by chemotherapy or inhibitors used for treatment of leukemia. This multidrug resistance seems to be mediated by ATP-binding cassette transporter genes, which are upregulated by hypoxia and whose inhibition has been shown to increase chemosensitivity. In addition, HIF-1α was upregulated in the leukemic cell lines in hypoxia and its inhibition increased the sensitivity to chemotherapy, indicating a role in inducing chemotherapy resistance.Conclusively, the results presented in this thesis stress the importance of hypoxia in regulating metabolism, oxidative-stress response and maintenance of both HSCs as well as leukemic cells, especially through the critical transcription factors HIF-1α and NF-κB and their target genes.  
  •  
8.
  • Hu, Yeguang, et al. (författare)
  • Superenhancer reprogramming drives a B-cell-epithelial transition and high-risk leukemia
  • 2016
  • Ingår i: Genes & Development. - : COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT. - 0890-9369 .- 1549-5477. ; 30:17, s. 1971-1990
  • Tidskriftsartikel (refereegranskat)abstract
    • IKAROS is required for the differentiation of highly proliferative pre-B-cell precursors, and loss of IKAROS function indicates poor prognosis in precursor B-cell acute lymphoblastic leukemia (B-ALL). Here we show that IKAROS regulates this developmental stage by positive and negative regulation of superenhancers with distinct lineage affiliations. IKAROS defines superenhancers at pre-B-cell differentiation genes together with B-cell master regulators such as PAX5, EBF1, and IRF4 but is required for a highly permissive chromatin environment, a function that cannot be compensated for by the other transcription factors. IKAROS is also highly enriched at inactive enhancers of genes normally expressed in stem-epithelial cells. Upon IKAROS loss, expression of pre-B-cell differentiation genes is attenuated, while a group of extralineage transcription factors that are directly repressed by IKAROS and depend on EBF1 relocalization at their enhancers for expression is induced. LHX2, LMO2, and TEAD-YAP1, normally kept separate from native B-cell transcription regulators by IKAROS, now cooperate directly with them in a de novo superenhancer network with its own feed-forward transcriptional reinforcement. Induction of de novo superenhancers antagonizes Polycomb repression and superimposes aberrant stem epithelial cell properties in a B-cell precursor. This dual mechanism of IKAROS regulation promotes differentiation while safeguarding against a hybrid stem epithelial B-cell phenotype that underlies high-risk B-ALL.
  •  
9.
  • Jacobsen, Jennifer A., et al. (författare)
  • EZH2 regulates the developmental timing of effectors of the pre-Antigen receptor checkpoints
  • 2017
  • Ingår i: Journal of Immunology. - : The American Association of Immunologists. - 0022-1767 .- 1550-6606. ; 198:12, s. 4682-4691
  • Tidskriftsartikel (refereegranskat)abstract
    • The histone methyltransferase EZH2 is required for B and T cell development; however, the molecular mechanisms underlying this requirement remain elusive. In a murine model of lymphoid-specific EZH2 deficiency we found that EZH2 was required for proper development of adaptive, but not innate, lymphoid cells. In adaptive lymphoid cells EZH2 prevented the premature expression of Cdkn2a and the consequent stabilization of p53, an effector of the pre-Ag receptor checkpoints. Deletion of Cdkn2a in EZH2-deficient lymphocytes prevented p53 stabilization, extended lymphocyte survival, and restored differentiation resulting in the generation of mature B and T lymphocytes. Our results uncover a crucial role for EZH2 in adaptive lymphocytes to control the developmental timing of effectors of the pre-Ag receptor checkpoints.
  •  
10.
  • Jensen, Christina, et al. (författare)
  • Exploring the multifaceted nature of the common lymphoid progenitor compartment.
  • 2016
  • Ingår i: Current Opinion in Immunology. - : Elsevier BV. - 1879-0372 .- 0952-7915. ; 39, s. 121-126
  • Forskningsöversikt (refereegranskat)abstract
    • While the common lymphoid progenitor compartment was originally thought to be a rather homogenous cell population, it has become increasingly clear that this compartment is highly heterogeneous both with regard to phenotypic and functional features. The exploration of this cellular complexity has generated novel molecular insights into regulatory events in lymphoid lineage restriction and provided support for the idea that multiple lineage restriction events occur at this developmental stage. Furthermore, the identification of multiple lineage-restricted progenitors with mixed lineage potential challenges a strictly hierarchical model for lymphoid development. Instead we propose a model based on competence windows during which cell fates are established through the action of lineage determining factors.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 30
Typ av publikation
tidskriftsartikel (24)
doktorsavhandling (3)
forskningsöversikt (3)
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Sigvardsson, Mikael (27)
Somasundaram, Rajesh (9)
Ungerbäck, Jonas (8)
Strid, Tobias (8)
Lang, Stefan (5)
Åhsberg, Josefine (5)
visa fler...
Soneji, Shamit (5)
Lilljebjörn, Henrik (3)
Fioretos, Thoas (3)
Karlsson, Göran (3)
Jensen, Christina T (3)
Kuruvilla, Jacob (3)
Schachtrup, Kristina (3)
Cristobal, Susana (2)
Bellodi, Cristian (2)
Hils, Miriam (2)
Schachtrup, Christia ... (2)
Hellström-Lindberg, ... (1)
Korsgren, Olle (1)
Nilsson, Bo (1)
Jensen, Christina (1)
Bryder, David (1)
van Rooijen, Nico (1)
Mckay, Derek M. (1)
Carlsson, Per-Ola (1)
Rothenberg, Ellen v. (1)
Jönsson, Göran (1)
Le Blanc, Katarina (1)
Stepensky, Polina (1)
Böiers, Charlotta (1)
Vergani, Stefano (1)
Larsson, Malin (1)
Cristobal, Susana, P ... (1)
Moll, Guido (1)
Beneventi, Giulia (1)
Munita, Roberto (1)
Ciesla, Maciej (1)
Shaag, Avraham (1)
Elpeleg, Orly (1)
Fahlgren, Anna, Asso ... (1)
Mansson, Robert (1)
Olsson, Karin (1)
Smith, Emma (1)
Alm, Jessica J. (1)
Davies, Lindsay C. (1)
Hansson, Jenny (1)
Heldring, Nina (1)
De Paepe, Ayla (1)
Bratengeier, Corneli ... (1)
Aspenberg, Per, Prof ... (1)
visa färre...
Lärosäte
Linköpings universitet (26)
Lunds universitet (15)
Karolinska Institutet (5)
Uppsala universitet (1)
Språk
Engelska (30)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (28)
Naturvetenskap (6)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy